File size: 8,065 Bytes
e85f016
bf0c1c8
 
 
 
 
 
 
 
7a709c2
e85f016
 
bf0c1c8
e85f016
bf0c1c8
e85f016
bf0c1c8
7a709c2
bf0c1c8
 
e85f016
bf0c1c8
5f49edf
e85f016
bf0c1c8
 
 
e85f016
 
bf0c1c8
 
 
 
 
 
0991819
e85f016
 
 
bf0c1c8
e85f016
bf0c1c8
 
 
 
e85f016
bf0c1c8
e85f016
bf0c1c8
 
 
 
 
 
 
e85f016
bf0c1c8
e85f016
bf0c1c8
e85f016
bf0c1c8
 
216f4ad
 
 
 
bf0c1c8
e85f016
bf0c1c8
 
e85f016
bf0c1c8
e85f016
bf0c1c8
 
 
 
 
 
 
 
 
 
 
 
e85f016
bf0c1c8
e85f016
bf0c1c8
 
 
 
 
e85f016
bf0c1c8
e85f016
bf0c1c8
 
e85f016
 
bf0c1c8
e85f016
bf0c1c8
 
e85f016
bf0c1c8
 
 
 
 
8752a9f
bf0c1c8
 
 
8752a9f
bf0c1c8
 
8752a9f
bf0c1c8
 
 
 
 
 
8752a9f
bf0c1c8
e85f016
bf0c1c8
 
 
 
 
 
 
 
32c15f5
bf0c1c8
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
---
license: apache-2.0
language:
- en
pipeline_tag: text-generation
base_model:
- allenai/OLMo-2-1124-7B-SFT
library_name: transformers
datasets:
- allenai/olmo-2-1124-7b-preference-mix-for-rm
---

<img alt="OLMo Logo" src="https://huggingface.co/datasets/allenai/blog-images/resolve/main/olmo2/olmo.png" width="242px">

# OLMo-2-1124-7B-RM

OLMo 2 7B RM November 2024 is reward model trained on top of the [OLMo 2 7B SFT November 2024](https://huggingface.co/allenai/OLMo2-7B-1124-SFT) model.
It has been trained using an OLMo-specific variant of the [Tülu 3 dataset](allenai/tulu-3-sft-olmo-2-mixture) and [this preference dataset](https://huggingface.co/datasets/allenai/olmo-2-1124-7b-preference-mix-for-rm).
Tülu 3 is designed for state-of-the-art performance on a diversity of tasks in addition to chat, such as MATH, GSM8K, and IFEval.
Check out the OLMo 2 paper (forthcoming) or [Tülu 3 paper](https://arxiv.org/abs/2411.15124) for more details!

This reward model was used to initialize value models during RLVR training for both 7B and 13B RLVR training.
Note we used a slightly different mix to the final mixture used for DPO training for this RM.

OLMo is a series of **O**pen **L**anguage **Mo**dels designed to enable the science of language models. 
These models are trained on the Dolma dataset. We are releasing all code, checkpoints, logs (coming soon), and associated training details. 
The core models released in this batch include the following:


| **Stage**           | **OLMo 2 7B**                                                                                          | **OLMo 2 13B**                                                                                         |
|----------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| **Base Model**       | [allenai/OLMo2-7B-1124](https://huggingface.co/allenai/OLMo2-7B-1124)                                | [allenai/OLMo-2-13B-1124](https://huggingface.co/allenai/OLMo-2-13B-1124)                             |
| **SFT**              | [allenai/OLMo-2-1124-7B-SFT](https://huggingface.co/allenai/OLMo-2-1124-7B-SFT)                | [allenai/OLMo-2-1124-13B-SFT](https://huggingface.co/allenai/OLMo-2-1124-13B-SFT)              |
| **DPO**              | [allenai/OLMo-2-1124-7B-DPO](https://huggingface.co/allenai/OLMo-2-1124-7B-DPO)                | [allenai/OLMo-2-1124-13B-DPO](https://huggingface.co/allenai/OLMo-2-1124-13B-DPO)              |
| **Final Models (RLVR)**     | [allenai/OLMo-2-1124-7B-Instruct](https://huggingface.co/allenai/OLMo-2-1124-7B-Instruct)                        | [allenai/OLMo-2-1124-13B-Instruct](https://huggingface.co/allenai/OLMo-2-1124-13B-Instruct)                      |
| **Reward Model (RM)**| [allenai/OLMo-2-1124-7B-RM](https://huggingface.co/allenai/OLMo-2-1124-7B-RM)                                                     | (Same as 7B)                                                     |



## Model description

- **Model type:** A model trained on a mix of publicly available, synthetic and human-created datasets.
- **Language(s) (NLP):** Primarily English
- **License:** Apache 2.0
- **Finetuned from model:** allenai/OLMo2-7B-1124-SFT

### Model Sources

- **Project Page:** https://allenai.org/olmo
- **Repositories:** 
    - Core repo (training, inference, fine-tuning etc.): https://github.com/allenai/OLMo
    - Evaluation code: https://github.com/allenai/olmes
    - Further fine-tuning code: https://github.com/allenai/open-instruct
- **Paper:** Coming soon!
- **Demo:** https://playground.allenai.org/

## Using the model

### Loading with HuggingFace

To load the model with HuggingFace, use the following snippet:
```
# please install from our custom branch
# pip install git+https://github.com/vwxyzjn/transformers.git@olmo1124_classification
from transformers.models.olmo_1124.modeling_olmo_1124 import Olmo1124ForSequenceClassification, Olmo1124Config
AutoModelForSequenceClassification.register(Olmo1124Config, Olmo1124ForSequenceClassification)
from transformers import AutoModelForSequenceClassification

olmo_model = AutoModelForSequenceClassification.from_pretrained("allenai/OLMo-2-1124-7B-RM")
```

### Chat template

The chat template for our models is formatted as:
```
<|endoftext|><|user|>\nHow are you doing?\n<|assistant|>\nI'm just a computer program, so I don't have feelings, but I'm functioning as expected. How can I assist you today?<|endoftext|>
```
Or with new lines expanded:
```
<|endoftext|><|user|>
How are you doing?
<|assistant|>
I'm just a computer program, so I don't have feelings, but I'm functioning as expected. How can I assist you today?<|endoftext|>
```
It is embedded within the tokenizer as well, for `tokenizer.apply_chat_template`.

### System prompt

In Ai2 demos, we use this system prompt by default:
```
You are OLMo 2, a helpful and harmless AI Assistant built by the Allen Institute for AI.
```
The model has not been trained with a specific system prompt in mind.

### Bias, Risks, and Limitations

The OLMo 2 models have limited safety training, but are not deployed automatically with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so). 
See the Falcon 180B model card for an example of this.


## Performance

Note we did not benchmark the RM since it is just used for initialization during RLVR training.
We provide the results of the OLMo-2 models below:

| Model | Average | AlpacaEval | BBH | DROP | GSM8k | IFEval | MATH | MMLU | Safety | PopQA | TruthQA |
|-------|---------|------------|-----|------|--------|---------|------|-------|---------|-------|---------|
| **Open weights models** |
| Gemma-2-9B-it | 51.9 | 43.7 | 2.5 | 58.8 | 79.7 | 69.9 | 29.8 | 69.1 | 75.5 | 28.3 | 61.4 |
| Ministral-8B-Instruct | 52.1 | 31.4 | 56.2 | 56.2 | 80.0 | 56.4 | 40.0 | 68.5 | 56.2 | 20.2 | 55.5 |
| Mistral-Nemo-Instruct-2407 | 50.9 | 45.8 | 54.6 | 23.6 | 81.4 | 64.5 | 31.9 | 70.0 | 52.7 | 26.9 | 57.7 |
| Qwen-2.5-7B-Instruct | 57.1 | 29.7 | 25.3 | 54.4 | 83.8 | 74.7 | 69.9 | 76.6 | 75.0 | 18.1 | 63.1 |
| Llama-3.1-8B-Instruct | 58.9 | 25.8 | 69.7 | 61.7 | 83.4 | 80.6 | 42.5 | 71.3 | 70.2 | 28.4 | 55.1 |
| Tülu 3 8B | 60.4 | 34.0 | 66.0 | 62.6 | 87.6 | 82.4 | 43.7 | 68.2 | 75.4 | 29.1 | 55.0 |
| Qwen-2.5-14B-Instruct | 60.8 | 34.6 | 34.0 | 50.5 | 83.9 | 82.4 | 70.6 | 81.1 | 79.3 | 21.1 | 70.8 |
| **Fully open models** |
| OLMo-7B-Instruct | 28.2 | 5.2 | 35.3 | 30.7 | 14.3 | 32.2 | 2.1 | 46.3 | 54.0 | 17.1 | 44.5 |
| OLMo-7B-0424-Instruct | 33.1 | 8.5 | 34.4 | 47.9 | 23.2 | 39.2 | 5.2 | 48.9 | 49.3 | 18.9 | 55.2 |
| OLMoE-1B-7B-0924-Instruct | 35.5 | 8.5 | 37.2 | 34.3 | 47.2 | 46.2 | 8.4 | 51.6 | 51.6 | 20.6 | 49.1 |
| MAP-Neo-7B-Instruct | 42.9 | 17.6 | 26.4 | 48.2 | 69.4 | 35.9 | 31.5 | 56.5 | 73.7 | 18.4 | 51.6 |
| *OLMo-2-7B-SFT* | 50.0 | 9.3 | 50.7 | 58.2 | 71.2 | 68.0 | 25.1 | 62.0 | 82.4 | 25.0 | 47.8 |
| *OLMo-2-7B-DPO* | 55.0 | 29.9 | 47.0 | 58.8 | 82.4 | 74.5 | 31.2 | 63.4 | 81.5 | 24.5 | 57.2 |
| *OLMo-2-13B-SFT* | 55.7 | 12.0 | 58.8 | 71.8 | 75.7 | 71.5 | 31.1 | 67.3 | 82.8 | 29.3 | 56.2 |
| *OLMo-2-13B-DPO* | 61.0 | 38.3 | 58.5 | 71.9 | 84.2 | 80.6 | 35.0 | 68.5 | 80.6 | 28.9 | 63.9 |
| **OLMo-2-7B-1124–Instruct** | 55.7 | 31.0 | 48.5 | 58.9 | 85.2 | 75.6 | 31.3 | 63.9 | 81.2 | 24.6 | 56.3 |
| **OLMo-2-13B-1124-Instruct** | 61.4 | 37.5 | 58.4 | 72.1 | 87.4 | 80.4 | 39.7 | 68.6 | 77.5 | 28.8 | 63.9 |

## Hyperparameters

RM training:
- **Learning Rate**: 3E-6 
- **Effective Batch Size:** 256
- **Max. Sequence Length:** 4096
- **Learning Rate Schedule:** None
- **Num. Epochs:** 1
 
## License and use

OLMo 2 is licensed under the Apache 2.0 license.
OLMo 2 is intended for research and educational use.
For more information, please see our [Responsible Use Guidelines](https://allenai.org/responsible-use).

## Citation

A technical manuscript is forthcoming!