Text Generation
Transformers
PyTorch
Safetensors
English
hf_olmo
custom_code
OLMo-1B / allenai_OLMo-1B.json
RiccardoDav's picture
add AIBOM
6583be2 verified
raw
history blame
6.48 kB
{
"bomFormat": "CycloneDX",
"specVersion": "1.6",
"serialNumber": "urn:uuid:c7a7cd4d-b598-4466-8f02-1ce70492fd11",
"version": 1,
"metadata": {
"timestamp": "2025-06-05T09:39:19.611048+00:00",
"component": {
"type": "machine-learning-model",
"bom-ref": "allenai/OLMo-1B-9441fd26-4ca0-5e30-91b5-8045c73a1f7c",
"name": "allenai/OLMo-1B",
"externalReferences": [
{
"url": "https://huggingface.co/allenai/OLMo-1B",
"type": "documentation"
}
],
"modelCard": {
"modelParameters": {
"task": "text-generation",
"architectureFamily": "hf_olmo",
"modelArchitecture": "OLMoForCausalLM",
"datasets": [
{
"ref": "allenai/dolma-1717a952-0159-5eb7-85fb-7ccf03c0a520"
}
]
},
"properties": [
{
"name": "library_name",
"value": "transformers"
}
],
"consideration": {
"useCases": "<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->"
}
},
"authors": [
{
"name": "allenai"
}
],
"licenses": [
{
"license": {
"id": "Apache-2.0",
"url": "https://spdx.org/licenses/Apache-2.0.html"
}
}
],
"description": "The core models released in this batch are the following:| Size | Training Tokens | Layers | Hidden Size | Attention Heads | Context Length ||------|--------|---------|-------------|-----------------|----------------|| [OLMo 1B](https://huggingface.co/allenai/OLMo-1B) | 3 Trillion |16 | 2048 | 16 | 2048 || [OLMo 7B](https://huggingface.co/allenai/OLMo-7B) | 2.5 Trillion | 32 | 4096 | 32 | 2048 || [OLMo 7B Twin 2T](https://huggingface.co/allenai/OLMo-7B-Twin-2T) | 2 Trillion | 32 | 4096 | 32 | 2048 |We are releasing many checkpoints for these models, for every 1000 traing steps.The naming convention is `step1000-tokens4B`.In particular, we focus on four revisions of the 7B models:| Name | HF Repo | Model Revision | Tokens | Note ||------------|---------|----------------|-------------------|------||OLMo 7B| [allenai/OLMo-7B](https://huggingface.co/allenai/OLMo-7B)|`main`| 2.5T|The base OLMo 7B model||OLMo 7B (not annealed)|[allenai/OLMo-7B](https://huggingface.co/allenai/OLMo-7B)|step556000-tokens2460B|2.5T| learning rate not annealed to 0||OLMo 7B-2T|[allenai/OLMo-7B](https://huggingface.co/allenai/OLMo-7B)| step452000-tokens2000B |2T| OLMo checkpoint at 2T tokens||OLMo-7B-Twin-2T|[allenai/OLMo-7B-Twin-2T](https://huggingface.co/allenai/OLMo-7B-Twin-2T)|`main`|2T| Twin version on different hardware|To load a specific model revision with HuggingFace, simply add the argument `revision`:```bashfrom hf_olmo import OLMoForCausalLM # pip install ai2-olmoolmo = OLMoForCausalLM.from_pretrained(\"allenai/OLMo-1B\", revision=\"step20000-tokens84B\")```All revisions/branches are listed in the file `revisions.txt`.Or, you can access all the revisions for the models via the following code snippet:```pythonfrom huggingface_hub import list_repo_refsout = list_repo_refs(\"allenai/OLMo-1B\")branches = [b.name for b in out.branches]```A few revisions were lost due to an error, but the vast majority are present.",
"tags": [
"transformers",
"pytorch",
"safetensors",
"hf_olmo",
"text-generation",
"custom_code",
"en",
"dataset:allenai/dolma",
"arxiv:2402.00838",
"arxiv:2302.13971",
"license:apache-2.0",
"autotrain_compatible",
"region:us"
]
}
},
"components": [
{
"type": "data",
"bom-ref": "allenai/dolma-1717a952-0159-5eb7-85fb-7ccf03c0a520",
"name": "allenai/dolma",
"data": [
{
"type": "dataset",
"bom-ref": "allenai/dolma-1717a952-0159-5eb7-85fb-7ccf03c0a520",
"name": "allenai/dolma",
"contents": {
"url": "https://huggingface.co/datasets/allenai/dolma",
"properties": [
{
"name": "task_categories",
"value": "text-generation"
},
{
"name": "language",
"value": "en"
},
{
"name": "size_categories",
"value": "n>1T"
},
{
"name": "pretty_name",
"value": "Dolma"
},
{
"name": "license",
"value": "odc-by"
}
]
},
"governance": {
"owners": [
{
"organization": {
"name": "allenai",
"url": "https://huggingface.co/allenai"
}
}
]
},
"description": "Dolma: an Open Corpus of Three Trillion Tokens for Language Model Pretraining Research"
}
]
}
]
}