from transformers import AutoProcessor, AutoModelForCausalLM, GenerationConfig | |
from PIL import Image | |
import requests | |
def main(): | |
load_path = "." | |
# load the processor | |
print("Loading processor") | |
processor = AutoProcessor.from_pretrained( | |
load_path, | |
trust_remote_code=True, | |
torch_dtype='auto', | |
device_map='auto' | |
) | |
# load the model | |
print("Loading model") | |
model = AutoModelForCausalLM.from_pretrained( | |
load_path, | |
trust_remote_code=True, | |
torch_dtype='auto', | |
device_map='auto' | |
) | |
# process the image and text | |
print("Processing...") | |
inputs = processor.process( | |
images=[Image.open(requests.get("https://picsum.photos/id/237/536/354", stream=True).raw)], | |
text="Describe this image." | |
) | |
# move inputs to the correct device and make a batch of size 1 | |
inputs = {k: v.to(model.device).unsqueeze(0) for k, v in inputs.items()} | |
# generate output; maximum 200 new tokens; stop generation when <|endoftext|> is generated | |
print("Generating....") | |
output = model.generate_from_batch( | |
inputs, | |
GenerationConfig(max_new_tokens=200, stop_strings="<|endoftext|>"), | |
tokenizer=processor.tokenizer | |
) | |
# only get generated tokens; decode them to text | |
generated_tokens = output[0,inputs['input_ids'].size(1):] | |
generated_text = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True) | |
# print the generated text | |
print(generated_text) | |
if __name__ == '__main__': | |
main() |