File size: 13,718 Bytes
0f9a414 bce34ca 0f9a414 b21061a 0f9a414 b21061a 0f9a414 b21061a c78735c b21061a 867a2ec b21061a 0f9a414 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
---
license: apache-2.0
language:
- en
- zh
pipeline_tag: text-to-video
library_name: diffusers
tags:
- video
- video-generation
---
# Wan-Fun
๐ Welcome!
[](https://huggingface.co/spaces/alibaba-pai/Wan2.1-Fun-1.3B-InP)
[](https://github.com/aigc-apps/VideoX-Fun)
[English](./README_en.md) | [็ฎไฝไธญๆ](./README.md)
# Table of Contents
- [Table of Contents](#table-of-contents)
- [Model zoo](#model-zoo)
- [Video Result](#video-result)
- [Quick Start](#quick-start)
- [How to use](#how-to-use)
- [Reference](#reference)
- [License](#license)
# Model zoo
V1.0:
| Name | Storage Space | Hugging Face | Model Scope | Description |
|--|--|--|--|--|
| Wan2.1-Fun-1.3B-InP | 19.0 GB | [๐คLink](https://huggingface.co/alibaba-pai/Wan2.1-Fun-1.3B-InP) | [๐Link](https://modelscope.cn/models/PAI/Wan2.1-Fun-1.3B-InP) | Wan2.1-Fun-1.3B text-to-video weights, trained at multiple resolutions, supporting start and end frame prediction. |
| Wan2.1-Fun-14B-InP | 47.0 GB | [๐คLink](https://huggingface.co/alibaba-pai/Wan2.1-Fun-14B-InP) | [๐Link](https://modelscope.cn/models/PAI/Wan2.1-Fun-14B-InP) | Wan2.1-Fun-14B text-to-video weights, trained at multiple resolutions, supporting start and end frame prediction. |
| Wan2.1-Fun-1.3B-Control | 19.0 GB | [๐คLink](https://huggingface.co/alibaba-pai/Wan2.1-Fun-1.3B-Control) | [๐Link](https://modelscope.cn/models/PAI/Wan2.1-Fun-1.3B-Control) | Wan2.1-Fun-1.3B video control weights, supporting various control conditions such as Canny, Depth, Pose, MLSD, etc., and trajectory control. Supports multi-resolution (512, 768, 1024) video prediction at 81 frames, trained at 16 frames per second, with multilingual prediction support. |
| Wan2.1-Fun-14B-Control | 47.0 GB | [๐คLink](https://huggingface.co/alibaba-pai/Wan2.1-Fun-14B-Control) | [๐Link](https://modelscope.cn/models/PAI/Wan2.1-Fun-14B-Control) | Wan2.1-Fun-14B video control weights, supporting various control conditions such as Canny, Depth, Pose, MLSD, etc., and trajectory control. Supports multi-resolution (512, 768, 1024) video prediction at 81 frames, trained at 16 frames per second, with multilingual prediction support. |
# Video Result
### Wan2.1-Fun-14B-InP && Wan2.1-Fun-1.3B-InP
<table border="0" style="width: 100%; text-align: left; margin-top: 20px;">
<tr>
<td>
<video src="https://github.com/user-attachments/assets/bd72a276-e60e-4b5d-86c1-d0f67e7425b9" width="100%" controls autoplay loop></video>
</td>
<td>
<video src="https://github.com/user-attachments/assets/cb7aef09-52c2-4973-80b4-b2fb63425044" width="100%" controls autoplay loop></video>
</td>
<td>
<video src="https://github.com/user-attachments/assets/4e10d491-f1cf-4b08-a7c5-1e01e5418140" width="100%" controls autoplay loop></video>
</td>
<td>
<video src="https://github.com/user-attachments/assets/f7e363a9-be09-4b72-bccf-cce9c9ebeb9b" width="100%" controls autoplay loop></video>
</td>
</tr>
</table>
<table border="0" style="width: 100%; text-align: left; margin-top: 20px;">
<tr>
<td>
<video src="https://github.com/user-attachments/assets/28f3e720-8acc-4f22-a5d0-ec1c571e9466" width="100%" controls autoplay loop></video>
</td>
<td>
<video src="https://github.com/user-attachments/assets/fb6e4cb9-270d-47cd-8501-caf8f3e91b5c" width="100%" controls autoplay loop></video>
</td>
<td>
<video src="https://github.com/user-attachments/assets/989a4644-e33b-4f0c-b68e-2ff6ba37ac7e" width="100%" controls autoplay loop></video>
</td>
<td>
<video src="https://github.com/user-attachments/assets/9c604fa7-8657-49d1-8066-b5bb198b28b6" width="100%" controls autoplay loop></video>
</td>
</tr>
</table>
### Wan2.1-Fun-14B-Control && Wan2.1-Fun-1.3B-Control
<table border="0" style="width: 100%; text-align: left; margin-top: 20px;">
<tr>
<td>
<video src="https://github.com/user-attachments/assets/f35602c4-9f0a-4105-9762-1e3a88abbac6" width="100%" controls autoplay loop></video>
</td>
<td>
<video src="https://github.com/user-attachments/assets/8b0f0e87-f1be-4915-bb35-2d53c852333e" width="100%" controls autoplay loop></video>
</td>
<td>
<video src="https://github.com/user-attachments/assets/972012c1-772b-427a-bce6-ba8b39edcfad" width="100%" controls autoplay loop></video>
</td>
<tr>
</table>
<table border="0" style="width: 100%; text-align: left; margin-top: 20px;">
<tr>
<td>
<video src="https://github.com/user-attachments/assets/53002ce2-dd18-4d4f-8135-b6f68364cabd" width="100%" controls autoplay loop></video>
</td>
<td>
<video src="https://github.com/user-attachments/assets/a1a07cf8-d86d-4cd2-831f-18a6c1ceee1d" width="100%" controls autoplay loop></video>
</td>
<td>
<video src="https://github.com/user-attachments/assets/3224804f-342d-4947-918d-d9fec8e3d273" width="100%" controls autoplay loop></video>
</td>
<tr>
<td>
<video src="https://github.com/user-attachments/assets/c6c5d557-9772-483e-ae47-863d8a26db4a" width="100%" controls autoplay loop></video>
</td>
<td>
<video src="https://github.com/user-attachments/assets/af617971-597c-4be4-beb5-f9e8aaca2d14" width="100%" controls autoplay loop></video>
</td>
<td>
<video src="https://github.com/user-attachments/assets/8411151e-f491-4264-8368-7fc3c5a6992b" width="100%" controls autoplay loop></video>
</td>
</tr>
</table>
# Quick Start
### 1. Cloud usage: AliyunDSW/Docker
#### a. From AliyunDSW
DSW has free GPU time, which can be applied once by a user and is valid for 3 months after applying.
Aliyun provide free GPU time in [Freetier](https://free.aliyun.com/?product=9602825&crowd=enterprise&spm=5176.28055625.J_5831864660.1.e939154aRgha4e&scm=20140722.M_9974135.P_110.MO_1806-ID_9974135-MID_9974135-CID_30683-ST_8512-V_1), get it and use in Aliyun PAI-DSW to start CogVideoX-Fun within 5min!
[](https://gallery.pai-ml.com/#/preview/deepLearning/cv/cogvideox_fun)
#### b. From ComfyUI
Our ComfyUI is as follows, please refer to [ComfyUI README](comfyui/README.md) for details.

#### c. From docker
If you are using docker, please make sure that the graphics card driver and CUDA environment have been installed correctly in your machine.
Then execute the following commands in this way:
```
# pull image
docker pull mybigpai-public-registry.cn-beijing.cr.aliyuncs.com/easycv/torch_cuda:cogvideox_fun
# enter image
docker run -it -p 7860:7860 --network host --gpus all --security-opt seccomp:unconfined --shm-size 200g mybigpai-public-registry.cn-beijing.cr.aliyuncs.com/easycv/torch_cuda:cogvideox_fun
# clone code
git clone https://github.com/aigc-apps/CogVideoX-Fun.git
# enter CogVideoX-Fun's dir
cd CogVideoX-Fun
# download weights
mkdir models/Diffusion_Transformer
mkdir models/Personalized_Model
# Please use the hugginface link or modelscope link to download the model.
# CogVideoX-Fun
# https://huggingface.co/alibaba-pai/CogVideoX-Fun-V1.1-5b-InP
# https://modelscope.cn/models/PAI/CogVideoX-Fun-V1.1-5b-InP
# Wan
# https://huggingface.co/alibaba-pai/Wan2.1-Fun-14B-InP
# https://modelscope.cn/models/PAI/Wan2.1-Fun-14B-InP
```
### 2. Local install: Environment Check/Downloading/Installation
#### a. Environment Check
We have verified this repo execution on the following environment:
The detailed of Windows:
- OS: Windows 10
- python: python3.10 & python3.11
- pytorch: torch2.2.0
- CUDA: 11.8 & 12.1
- CUDNN: 8+
- GPU๏ผ Nvidia-3060 12G & Nvidia-3090 24G
The detailed of Linux:
- OS: Ubuntu 20.04, CentOS
- python: python3.10 & python3.11
- pytorch: torch2.2.0
- CUDA: 11.8 & 12.1
- CUDNN: 8+
- GPU๏ผNvidia-V100 16G & Nvidia-A10 24G & Nvidia-A100 40G & Nvidia-A100 80G
We need about 60GB available on disk (for saving weights), please check!
#### b. Weights
We'd better place the [weights](#model-zoo) along the specified path:
```
๐ฆ models/
โโโ ๐ Diffusion_Transformer/
โ โโโ ๐ CogVideoX-Fun-V1.1-2b-InP/
โ โโโ ๐ CogVideoX-Fun-V1.1-5b-InP/
โ โโโ ๐ Wan2.1-Fun-14B-InP
โ โโโ ๐ Wan2.1-Fun-1.3B-InP/
โโโ ๐ Personalized_Model/
โ โโโ your trained trainformer model / your trained lora model (for UI load)
```
# How to Use
<h3 id="video-gen">1. Generation</h3>
#### a. GPU Memory Optimization
Since Wan2.1 has a very large number of parameters, we need to consider memory optimization strategies to adapt to consumer-grade GPUs. We provide `GPU_memory_mode` for each prediction file, allowing you to choose between `model_cpu_offload`, `model_cpu_offload_and_qfloat8`, and `sequential_cpu_offload`. This solution is also applicable to CogVideoX-Fun generation.
- `model_cpu_offload`: The entire model is moved to the CPU after use, saving some GPU memory.
- `model_cpu_offload_and_qfloat8`: The entire model is moved to the CPU after use, and the transformer model is quantized to float8, saving more GPU memory.
- `sequential_cpu_offload`: Each layer of the model is moved to the CPU after use. It is slower but saves a significant amount of GPU memory.
`qfloat8` may slightly reduce model performance but saves more GPU memory. If you have sufficient GPU memory, it is recommended to use `model_cpu_offload`.
#### b. Using ComfyUI
For details, refer to [ComfyUI README](comfyui/README.md).
#### c. Running Python Files
- **Step 1**: Download the corresponding [weights](#model-zoo) and place them in the `models` folder.
- **Step 2**: Use different files for prediction based on the weights and prediction goals. This library currently supports CogVideoX-Fun, Wan2.1, and Wan2.1-Fun. Different models are distinguished by folder names under the `examples` folder, and their supported features vary. Use them accordingly. Below is an example using CogVideoX-Fun:
- **Text-to-Video**:
- Modify `prompt`, `neg_prompt`, `guidance_scale`, and `seed` in the file `examples/cogvideox_fun/predict_t2v.py`.
- Run the file `examples/cogvideox_fun/predict_t2v.py` and wait for the results. The generated videos will be saved in the folder `samples/cogvideox-fun-videos`.
- **Image-to-Video**:
- Modify `validation_image_start`, `validation_image_end`, `prompt`, `neg_prompt`, `guidance_scale`, and `seed` in the file `examples/cogvideox_fun/predict_i2v.py`.
- `validation_image_start` is the starting image of the video, and `validation_image_end` is the ending image of the video.
- Run the file `examples/cogvideox_fun/predict_i2v.py` and wait for the results. The generated videos will be saved in the folder `samples/cogvideox-fun-videos_i2v`.
- **Video-to-Video**:
- Modify `validation_video`, `validation_image_end`, `prompt`, `neg_prompt`, `guidance_scale`, and `seed` in the file `examples/cogvideox_fun/predict_v2v.py`.
- `validation_video` is the reference video for video-to-video generation. You can use the following demo video: [Demo Video](https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/cogvideox_fun/asset/v1/play_guitar.mp4).
- Run the file `examples/cogvideox_fun/predict_v2v.py` and wait for the results. The generated videos will be saved in the folder `samples/cogvideox-fun-videos_v2v`.
- **Controlled Video Generation (Canny, Pose, Depth, etc.)**:
- Modify `control_video`, `validation_image_end`, `prompt`, `neg_prompt`, `guidance_scale`, and `seed` in the file `examples/cogvideox_fun/predict_v2v_control.py`.
- `control_video` is the control video extracted using operators such as Canny, Pose, or Depth. You can use the following demo video: [Demo Video](https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/cogvideox_fun/asset/v1.1/pose.mp4).
- Run the file `examples/cogvideox_fun/predict_v2v_control.py` and wait for the results. The generated videos will be saved in the folder `samples/cogvideox-fun-videos_v2v_control`.
- **Step 3**: If you want to integrate other backbones or Loras trained by yourself, modify `lora_path` and relevant paths in `examples/{model_name}/predict_t2v.py` or `examples/{model_name}/predict_i2v.py` as needed.
#### d. Using the Web UI
The web UI supports text-to-video, image-to-video, video-to-video, and controlled video generation (Canny, Pose, Depth, etc.). This library currently supports CogVideoX-Fun, Wan2.1, and Wan2.1-Fun. Different models are distinguished by folder names under the `examples` folder, and their supported features vary. Use them accordingly. Below is an example using CogVideoX-Fun:
- **Step 1**: Download the corresponding [weights](#model-zoo) and place them in the `models` folder.
- **Step 2**: Run the file `examples/cogvideox_fun/app.py` to access the Gradio interface.
- **Step 3**: Select the generation model on the page, fill in `prompt`, `neg_prompt`, `guidance_scale`, and `seed`, click "Generate," and wait for the results. The generated videos will be saved in the `sample` folder.
# Reference
- CogVideo: https://github.com/THUDM/CogVideo/
- EasyAnimate: https://github.com/aigc-apps/EasyAnimate
- Wan2.1: https://github.com/Wan-Video/Wan2.1/
# License
This project is licensed under the [Apache License (Version 2.0)](https://github.com/modelscope/modelscope/blob/master/LICENSE). |