ali-issa commited on
Commit
9ea119f
·
1 Parent(s): 8bb75eb

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: wav2vec2-Arabizi-gpu-colab-similar-to-german-param
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ # wav2vec2-Arabizi-gpu-colab-similar-to-german-param
14
+
15
+ This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 0.5609
18
+ - Wer: 0.4042
19
+
20
+ ## Model description
21
+
22
+ More information needed
23
+
24
+ ## Intended uses & limitations
25
+
26
+ More information needed
27
+
28
+ ## Training and evaluation data
29
+
30
+ More information needed
31
+
32
+ ## Training procedure
33
+
34
+ ### Training hyperparameters
35
+
36
+ The following hyperparameters were used during training:
37
+ - learning_rate: 0.0001
38
+ - train_batch_size: 2
39
+ - eval_batch_size: 8
40
+ - seed: 42
41
+ - gradient_accumulation_steps: 6
42
+ - total_train_batch_size: 12
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - lr_scheduler_warmup_steps: 500
46
+ - num_epochs: 30
47
+ - mixed_precision_training: Native AMP
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
52
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
53
+ | 4.6416 | 2.83 | 400 | 2.8983 | 1.0 |
54
+ | 1.4951 | 5.67 | 800 | 0.6272 | 0.6097 |
55
+ | 0.6419 | 8.51 | 1200 | 0.5491 | 0.5069 |
56
+ | 0.4767 | 11.35 | 1600 | 0.5152 | 0.4553 |
57
+ | 0.3899 | 14.18 | 2000 | 0.5436 | 0.4475 |
58
+ | 0.3342 | 17.02 | 2400 | 0.5400 | 0.4431 |
59
+ | 0.2982 | 19.85 | 2800 | 0.5599 | 0.4248 |
60
+ | 0.2738 | 22.69 | 3200 | 0.5401 | 0.4103 |
61
+ | 0.2563 | 25.53 | 3600 | 0.5710 | 0.4198 |
62
+ | 0.2443 | 28.37 | 4000 | 0.5609 | 0.4042 |
63
+
64
+
65
+ ### Framework versions
66
+
67
+ - Transformers 4.11.3
68
+ - Pytorch 1.10.0+cu113
69
+ - Datasets 1.18.3
70
+ - Tokenizers 0.10.3