ali-issa commited on
Commit
bf79112
·
1 Parent(s): 03f1908

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: wav2vec2-arabic-gpu-colab-similar-to-german-bigger-warm-up
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ # wav2vec2-arabic-gpu-colab-similar-to-german-bigger-warm-up
14
+
15
+ This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 0.6370
18
+ - Wer: 0.4146
19
+
20
+ ## Model description
21
+
22
+ More information needed
23
+
24
+ ## Intended uses & limitations
25
+
26
+ More information needed
27
+
28
+ ## Training and evaluation data
29
+
30
+ More information needed
31
+
32
+ ## Training procedure
33
+
34
+ ### Training hyperparameters
35
+
36
+ The following hyperparameters were used during training:
37
+ - learning_rate: 0.0001
38
+ - train_batch_size: 2
39
+ - eval_batch_size: 8
40
+ - seed: 42
41
+ - gradient_accumulation_steps: 6
42
+ - total_train_batch_size: 12
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - lr_scheduler_warmup_steps: 5000
46
+ - num_epochs: 40
47
+ - mixed_precision_training: Native AMP
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
52
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
53
+ | 9.4958 | 2.83 | 400 | 3.4822 | 1.0 |
54
+ | 3.2281 | 5.67 | 800 | 2.9404 | 1.0 |
55
+ | 2.942 | 8.51 | 1200 | 2.8690 | 1.0 |
56
+ | 2.6346 | 11.35 | 1600 | 1.5452 | 0.9994 |
57
+ | 1.3472 | 14.18 | 2000 | 0.8261 | 0.6853 |
58
+ | 0.8972 | 17.02 | 2400 | 0.6812 | 0.5737 |
59
+ | 0.6924 | 19.85 | 2800 | 0.6552 | 0.5291 |
60
+ | 0.5687 | 22.69 | 3200 | 0.6108 | 0.4909 |
61
+ | 0.4734 | 25.53 | 3600 | 0.5877 | 0.4674 |
62
+ | 0.4029 | 28.37 | 4000 | 0.6204 | 0.4662 |
63
+ | 0.3483 | 31.2 | 4400 | 0.5932 | 0.4451 |
64
+ | 0.307 | 34.04 | 4800 | 0.6445 | 0.4392 |
65
+ | 0.2722 | 36.88 | 5200 | 0.6126 | 0.4292 |
66
+ | 0.2247 | 39.71 | 5600 | 0.6370 | 0.4146 |
67
+
68
+
69
+ ### Framework versions
70
+
71
+ - Transformers 4.11.3
72
+ - Pytorch 1.10.0+cu113
73
+ - Datasets 1.18.3
74
+ - Tokenizers 0.10.3