update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: wav2vec2-arabic-gpu-colab-similar-to-german-bigger-warm-up
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# wav2vec2-arabic-gpu-colab-similar-to-german-bigger-warm-up
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.6370
|
18 |
+
- Wer: 0.4146
|
19 |
+
|
20 |
+
## Model description
|
21 |
+
|
22 |
+
More information needed
|
23 |
+
|
24 |
+
## Intended uses & limitations
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Training and evaluation data
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training procedure
|
33 |
+
|
34 |
+
### Training hyperparameters
|
35 |
+
|
36 |
+
The following hyperparameters were used during training:
|
37 |
+
- learning_rate: 0.0001
|
38 |
+
- train_batch_size: 2
|
39 |
+
- eval_batch_size: 8
|
40 |
+
- seed: 42
|
41 |
+
- gradient_accumulation_steps: 6
|
42 |
+
- total_train_batch_size: 12
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: linear
|
45 |
+
- lr_scheduler_warmup_steps: 5000
|
46 |
+
- num_epochs: 40
|
47 |
+
- mixed_precision_training: Native AMP
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
52 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
53 |
+
| 9.4958 | 2.83 | 400 | 3.4822 | 1.0 |
|
54 |
+
| 3.2281 | 5.67 | 800 | 2.9404 | 1.0 |
|
55 |
+
| 2.942 | 8.51 | 1200 | 2.8690 | 1.0 |
|
56 |
+
| 2.6346 | 11.35 | 1600 | 1.5452 | 0.9994 |
|
57 |
+
| 1.3472 | 14.18 | 2000 | 0.8261 | 0.6853 |
|
58 |
+
| 0.8972 | 17.02 | 2400 | 0.6812 | 0.5737 |
|
59 |
+
| 0.6924 | 19.85 | 2800 | 0.6552 | 0.5291 |
|
60 |
+
| 0.5687 | 22.69 | 3200 | 0.6108 | 0.4909 |
|
61 |
+
| 0.4734 | 25.53 | 3600 | 0.5877 | 0.4674 |
|
62 |
+
| 0.4029 | 28.37 | 4000 | 0.6204 | 0.4662 |
|
63 |
+
| 0.3483 | 31.2 | 4400 | 0.5932 | 0.4451 |
|
64 |
+
| 0.307 | 34.04 | 4800 | 0.6445 | 0.4392 |
|
65 |
+
| 0.2722 | 36.88 | 5200 | 0.6126 | 0.4292 |
|
66 |
+
| 0.2247 | 39.71 | 5600 | 0.6370 | 0.4146 |
|
67 |
+
|
68 |
+
|
69 |
+
### Framework versions
|
70 |
+
|
71 |
+
- Transformers 4.11.3
|
72 |
+
- Pytorch 1.10.0+cu113
|
73 |
+
- Datasets 1.18.3
|
74 |
+
- Tokenizers 0.10.3
|