Commit
·
29c1d9c
1
Parent(s):
a8918f6
Upload README.md
Browse files
README.md
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
model-index:
|
5 |
+
- name: bertlawbr
|
6 |
+
results: []
|
7 |
+
---
|
8 |
+
|
9 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
10 |
+
should probably proofread and complete it, then remove this comment. -->
|
11 |
+
|
12 |
+
# bertlawbr
|
13 |
+
|
14 |
+
This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset.
|
15 |
+
It achieves the following results on the evaluation set:
|
16 |
+
- Loss: 1.0495
|
17 |
+
|
18 |
+
## Model description
|
19 |
+
|
20 |
+
More information needed
|
21 |
+
|
22 |
+
## Intended uses & limitations
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Training and evaluation data
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training procedure
|
31 |
+
|
32 |
+
### Training hyperparameters
|
33 |
+
|
34 |
+
The following hyperparameters were used during training:
|
35 |
+
- learning_rate: 0.0001
|
36 |
+
- train_batch_size: 16
|
37 |
+
- eval_batch_size: 16
|
38 |
+
- seed: 42
|
39 |
+
- gradient_accumulation_steps: 8
|
40 |
+
- total_train_batch_size: 128
|
41 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06
|
42 |
+
- lr_scheduler_type: linear
|
43 |
+
- lr_scheduler_warmup_steps: 10000
|
44 |
+
- num_epochs: 20.0
|
45 |
+
- mixed_precision_training: Native AMP
|
46 |
+
|
47 |
+
### Training results
|
48 |
+
|
49 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
50 |
+
|:-------------:|:-----:|:------:|:---------------:|
|
51 |
+
| 6.1291 | 0.22 | 2500 | 5.9888 |
|
52 |
+
| 4.8604 | 0.44 | 5000 | 4.4841 |
|
53 |
+
| 3.3321 | 0.66 | 7500 | 3.1190 |
|
54 |
+
| 2.7579 | 0.87 | 10000 | 2.6089 |
|
55 |
+
| 2.4135 | 1.09 | 12500 | 2.3029 |
|
56 |
+
| 2.2136 | 1.31 | 15000 | 2.1244 |
|
57 |
+
| 2.0735 | 1.53 | 17500 | 1.9931 |
|
58 |
+
| 1.9684 | 1.75 | 20000 | 1.8878 |
|
59 |
+
| 1.891 | 1.97 | 22500 | 1.8077 |
|
60 |
+
| 1.8215 | 2.18 | 25000 | 1.7487 |
|
61 |
+
| 1.7577 | 2.4 | 27500 | 1.6875 |
|
62 |
+
| 1.7113 | 2.62 | 30000 | 1.6444 |
|
63 |
+
| 1.6776 | 2.84 | 32500 | 1.6036 |
|
64 |
+
| 1.6203 | 3.06 | 35000 | 1.5608 |
|
65 |
+
| 1.6018 | 3.28 | 37500 | 1.5293 |
|
66 |
+
| 1.5602 | 3.5 | 40000 | 1.5044 |
|
67 |
+
| 1.5429 | 3.71 | 42500 | 1.4753 |
|
68 |
+
| 1.5148 | 3.93 | 45000 | 1.4472 |
|
69 |
+
| 1.4786 | 4.15 | 47500 | 1.4302 |
|
70 |
+
| 1.4653 | 4.37 | 50000 | 1.4128 |
|
71 |
+
| 1.4496 | 4.59 | 52500 | 1.3991 |
|
72 |
+
| 1.4445 | 4.81 | 55000 | 1.3943 |
|
73 |
+
| 1.5114 | 5.02 | 57500 | 1.4551 |
|
74 |
+
| 1.5054 | 5.24 | 60000 | 1.4525 |
|
75 |
+
| 1.4817 | 5.46 | 62500 | 1.4259 |
|
76 |
+
| 1.48 | 5.68 | 65000 | 1.4077 |
|
77 |
+
| 1.4526 | 5.9 | 67500 | 1.3912 |
|
78 |
+
| 1.4272 | 6.12 | 70000 | 1.3726 |
|
79 |
+
| 1.4078 | 6.34 | 72500 | 1.3596 |
|
80 |
+
| 1.399 | 6.55 | 75000 | 1.3450 |
|
81 |
+
| 1.386 | 6.77 | 77500 | 1.3328 |
|
82 |
+
| 1.3704 | 6.99 | 80000 | 1.3192 |
|
83 |
+
| 1.3538 | 7.21 | 82500 | 1.3131 |
|
84 |
+
| 1.3468 | 7.43 | 85000 | 1.2916 |
|
85 |
+
| 1.323 | 7.65 | 87500 | 1.2871 |
|
86 |
+
| 1.322 | 7.86 | 90000 | 1.2622 |
|
87 |
+
| 1.2956 | 8.08 | 92500 | 1.2624 |
|
88 |
+
| 1.2869 | 8.3 | 95000 | 1.2547 |
|
89 |
+
| 1.2763 | 8.52 | 97500 | 1.2404 |
|
90 |
+
| 1.275 | 8.74 | 100000 | 1.2305 |
|
91 |
+
| 1.2709 | 8.96 | 102500 | 1.2301 |
|
92 |
+
| 1.2514 | 9.18 | 105000 | 1.2179 |
|
93 |
+
| 1.2563 | 9.39 | 107500 | 1.2134 |
|
94 |
+
| 1.2487 | 9.61 | 110000 | 1.2111 |
|
95 |
+
| 1.2337 | 9.83 | 112500 | 1.2041 |
|
96 |
+
| 1.3215 | 10.05 | 115000 | 1.2879 |
|
97 |
+
| 1.3364 | 10.27 | 117500 | 1.2850 |
|
98 |
+
| 1.3286 | 10.49 | 120000 | 1.2779 |
|
99 |
+
| 1.3202 | 10.7 | 122500 | 1.2730 |
|
100 |
+
| 1.3181 | 10.92 | 125000 | 1.2651 |
|
101 |
+
| 1.2952 | 11.14 | 127500 | 1.2544 |
|
102 |
+
| 1.2889 | 11.36 | 130000 | 1.2506 |
|
103 |
+
| 1.2747 | 11.58 | 132500 | 1.2339 |
|
104 |
+
| 1.2729 | 11.8 | 135000 | 1.2277 |
|
105 |
+
| 1.2699 | 12.02 | 137500 | 1.2201 |
|
106 |
+
| 1.2508 | 12.23 | 140000 | 1.2163 |
|
107 |
+
| 1.2438 | 12.45 | 142500 | 1.2091 |
|
108 |
+
| 1.2445 | 12.67 | 145000 | 1.2003 |
|
109 |
+
| 1.2314 | 12.89 | 147500 | 1.1957 |
|
110 |
+
| 1.2188 | 13.11 | 150000 | 1.1843 |
|
111 |
+
| 1.2071 | 13.33 | 152500 | 1.1805 |
|
112 |
+
| 1.2123 | 13.54 | 155000 | 1.1766 |
|
113 |
+
| 1.2016 | 13.76 | 157500 | 1.1661 |
|
114 |
+
| 1.2079 | 13.98 | 160000 | 1.1625 |
|
115 |
+
| 1.1884 | 14.2 | 162500 | 1.1525 |
|
116 |
+
| 1.177 | 14.42 | 165000 | 1.1419 |
|
117 |
+
| 1.1793 | 14.64 | 167500 | 1.1454 |
|
118 |
+
| 1.173 | 14.85 | 170000 | 1.1379 |
|
119 |
+
| 1.1502 | 15.07 | 172500 | 1.1371 |
|
120 |
+
| 1.1504 | 15.29 | 175000 | 1.1295 |
|
121 |
+
| 1.146 | 15.51 | 177500 | 1.1203 |
|
122 |
+
| 1.1487 | 15.73 | 180000 | 1.1137 |
|
123 |
+
| 1.1329 | 15.95 | 182500 | 1.1196 |
|
124 |
+
| 1.1259 | 16.17 | 185000 | 1.1075 |
|
125 |
+
| 1.1287 | 16.38 | 187500 | 1.1037 |
|
126 |
+
| 1.126 | 16.6 | 190000 | 1.1042 |
|
127 |
+
| 1.1199 | 16.82 | 192500 | 1.0953 |
|
128 |
+
| 1.1072 | 17.04 | 195000 | 1.0885 |
|
129 |
+
| 1.1043 | 17.26 | 197500 | 1.0877 |
|
130 |
+
| 1.1007 | 17.48 | 200000 | 1.0835 |
|
131 |
+
| 1.0879 | 17.69 | 202500 | 1.0819 |
|
132 |
+
| 1.1 | 17.91 | 205000 | 1.0744 |
|
133 |
+
| 1.0863 | 18.13 | 207500 | 1.0774 |
|
134 |
+
| 1.087 | 18.35 | 210000 | 1.0759 |
|
135 |
+
| 1.0755 | 18.57 | 212500 | 1.0618 |
|
136 |
+
| 1.0832 | 18.79 | 215000 | 1.0628 |
|
137 |
+
| 1.0771 | 19.01 | 217500 | 1.0611 |
|
138 |
+
| 1.0703 | 19.22 | 220000 | 1.0555 |
|
139 |
+
| 1.069 | 19.44 | 222500 | 1.0552 |
|
140 |
+
| 1.0706 | 19.66 | 225000 | 1.0509 |
|
141 |
+
| 1.0633 | 19.88 | 227500 | 1.0465 |
|
142 |
+
|
143 |
+
|
144 |
+
### Framework versions
|
145 |
+
|
146 |
+
- Transformers 4.12.5
|
147 |
+
- Pytorch 1.10.1+cu113
|
148 |
+
- Datasets 1.17.0
|
149 |
+
- Tokenizers 0.10.3
|