Update README.md
Browse files
README.md
CHANGED
|
@@ -1,19 +1,18 @@
|
|
| 1 |
---
|
| 2 |
license: mit
|
| 3 |
-
|
|
|
|
|
|
|
| 4 |
tags:
|
| 5 |
-
-
|
| 6 |
-
model-index:
|
| 7 |
-
- name: text-normalization-ru-new
|
| 8 |
-
results: []
|
| 9 |
---
|
| 10 |
|
| 11 |
-
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 12 |
-
should probably proofread and complete it, then remove this comment. -->
|
| 13 |
-
|
| 14 |
# text-normalization-ru-new
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
-
This model is a fine-tuned version of [cointegrated/rut5-small](https://huggingface.co/cointegrated/rut5-small) on an unknown dataset.
|
| 17 |
It achieves the following results on the evaluation set:
|
| 18 |
- Loss: 0.0177
|
| 19 |
- Mean Distance: 0
|
|
@@ -21,99 +20,8 @@ It achieves the following results on the evaluation set:
|
|
| 21 |
|
| 22 |
## Model description
|
| 23 |
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
## Training and evaluation data
|
| 31 |
-
|
| 32 |
-
More information needed
|
| 33 |
-
|
| 34 |
-
## Training procedure
|
| 35 |
-
|
| 36 |
-
### Training hyperparameters
|
| 37 |
-
|
| 38 |
-
The following hyperparameters were used during training:
|
| 39 |
-
- learning_rate: 0.001
|
| 40 |
-
- train_batch_size: 30
|
| 41 |
-
- eval_batch_size: 30
|
| 42 |
-
- seed: 42
|
| 43 |
-
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 44 |
-
- lr_scheduler_type: linear
|
| 45 |
-
- lr_scheduler_warmup_ratio: 0.1
|
| 46 |
-
- num_epochs: 60
|
| 47 |
-
|
| 48 |
-
### Training results
|
| 49 |
-
|
| 50 |
-
| Training Loss | Epoch | Step | Validation Loss | Mean Distance | Max Distance |
|
| 51 |
-
|:-------------:|:-----:|:------:|:---------------:|:-------------:|:------------:|
|
| 52 |
-
| 0.2236 | 1.0 | 3298 | 0.1120 | 5 | 133 |
|
| 53 |
-
| 0.1179 | 2.0 | 6596 | 0.0548 | 3 | 82 |
|
| 54 |
-
| 0.0829 | 3.0 | 9894 | 0.0425 | 1 | 46 |
|
| 55 |
-
| 0.0643 | 4.0 | 13192 | 0.0311 | 1 | 64 |
|
| 56 |
-
| 0.0538 | 5.0 | 16490 | 0.0267 | 1 | 48 |
|
| 57 |
-
| 0.0469 | 6.0 | 19788 | 0.0396 | 2 | 80 |
|
| 58 |
-
| 0.0385 | 7.0 | 23086 | 0.0262 | 2 | 73 |
|
| 59 |
-
| 0.0316 | 8.0 | 26384 | 0.0223 | 1 | 40 |
|
| 60 |
-
| 0.0263 | 9.0 | 29682 | 0.0240 | 1 | 69 |
|
| 61 |
-
| 0.0226 | 10.0 | 32980 | 0.0203 | 1 | 60 |
|
| 62 |
-
| 0.0203 | 11.0 | 36278 | 0.0177 | 1 | 54 |
|
| 63 |
-
| 0.0178 | 12.0 | 39576 | 0.0188 | 1 | 61 |
|
| 64 |
-
| 0.0154 | 13.0 | 42874 | 0.0296 | 1 | 65 |
|
| 65 |
-
| 0.0138 | 14.0 | 46172 | 0.0201 | 1 | 55 |
|
| 66 |
-
| 0.012 | 15.0 | 49470 | 0.0268 | 1 | 67 |
|
| 67 |
-
| 0.0109 | 16.0 | 52768 | 0.0163 | 1 | 35 |
|
| 68 |
-
| 0.0105 | 17.0 | 56066 | 0.0136 | 1 | 26 |
|
| 69 |
-
| 0.0092 | 18.0 | 59364 | 0.0202 | 1 | 65 |
|
| 70 |
-
| 0.0087 | 19.0 | 62662 | 0.0221 | 1 | 65 |
|
| 71 |
-
| 0.0075 | 20.0 | 65960 | 0.0203 | 1 | 33 |
|
| 72 |
-
| 0.0067 | 21.0 | 69258 | 0.0226 | 1 | 26 |
|
| 73 |
-
| 0.0062 | 22.0 | 72556 | 0.0184 | 1 | 24 |
|
| 74 |
-
| 0.0059 | 23.0 | 75854 | 0.0131 | 0 | 18 |
|
| 75 |
-
| 0.0054 | 24.0 | 79152 | 0.0270 | 1 | 58 |
|
| 76 |
-
| 0.0052 | 25.0 | 82450 | 0.0244 | 1 | 45 |
|
| 77 |
-
| 0.0044 | 26.0 | 85748 | 0.0149 | 1 | 23 |
|
| 78 |
-
| 0.0043 | 27.0 | 89046 | 0.0256 | 1 | 63 |
|
| 79 |
-
| 0.0038 | 28.0 | 92344 | 0.0172 | 1 | 30 |
|
| 80 |
-
| 0.0036 | 29.0 | 95642 | 0.0224 | 1 | 37 |
|
| 81 |
-
| 0.0033 | 30.0 | 98940 | 0.0194 | 1 | 30 |
|
| 82 |
-
| 0.0031 | 31.0 | 102238 | 0.0238 | 1 | 59 |
|
| 83 |
-
| 0.003 | 32.0 | 105536 | 0.0200 | 1 | 28 |
|
| 84 |
-
| 0.0028 | 33.0 | 108834 | 0.0161 | 0 | 18 |
|
| 85 |
-
| 0.0027 | 34.0 | 112132 | 0.0215 | 1 | 26 |
|
| 86 |
-
| 0.0025 | 35.0 | 115430 | 0.0198 | 0 | 19 |
|
| 87 |
-
| 0.0023 | 36.0 | 118728 | 0.0168 | 0 | 24 |
|
| 88 |
-
| 0.002 | 37.0 | 122026 | 0.0221 | 1 | 32 |
|
| 89 |
-
| 0.0019 | 38.0 | 125324 | 0.0214 | 1 | 32 |
|
| 90 |
-
| 0.0017 | 39.0 | 128622 | 0.0186 | 0 | 19 |
|
| 91 |
-
| 0.0017 | 40.0 | 131920 | 0.0171 | 0 | 23 |
|
| 92 |
-
| 0.0016 | 41.0 | 135218 | 0.0164 | 0 | 17 |
|
| 93 |
-
| 0.0015 | 42.0 | 138516 | 0.0166 | 1 | 21 |
|
| 94 |
-
| 0.0014 | 43.0 | 141814 | 0.0167 | 0 | 21 |
|
| 95 |
-
| 0.0019 | 44.0 | 145112 | 0.0192 | 1 | 32 |
|
| 96 |
-
| 0.0011 | 45.0 | 148410 | 0.0209 | 1 | 27 |
|
| 97 |
-
| 0.0011 | 46.0 | 151708 | 0.0218 | 0 | 23 |
|
| 98 |
-
| 0.001 | 47.0 | 155006 | 0.0195 | 0 | 25 |
|
| 99 |
-
| 0.0009 | 48.0 | 158304 | 0.0166 | 0 | 15 |
|
| 100 |
-
| 0.0008 | 49.0 | 161602 | 0.0210 | 1 | 31 |
|
| 101 |
-
| 0.0008 | 50.0 | 164900 | 0.0230 | 0 | 22 |
|
| 102 |
-
| 0.0008 | 51.0 | 168198 | 0.0184 | 0 | 15 |
|
| 103 |
-
| 0.0007 | 52.0 | 171496 | 0.0183 | 0 | 15 |
|
| 104 |
-
| 0.0006 | 53.0 | 174794 | 0.0234 | 1 | 32 |
|
| 105 |
-
| 0.0005 | 54.0 | 178092 | 0.0227 | 0 | 24 |
|
| 106 |
-
| 0.0004 | 55.0 | 181390 | 0.0188 | 0 | 15 |
|
| 107 |
-
| 0.0005 | 56.0 | 184688 | 0.0191 | 0 | 15 |
|
| 108 |
-
| 0.0004 | 57.0 | 187986 | 0.0183 | 0 | 15 |
|
| 109 |
-
| 0.0003 | 58.0 | 191284 | 0.0180 | 0 | 15 |
|
| 110 |
-
| 0.0003 | 59.0 | 194582 | 0.0180 | 0 | 15 |
|
| 111 |
-
| 0.0004 | 60.0 | 197880 | 0.0177 | 0 | 15 |
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
### Framework versions
|
| 115 |
-
|
| 116 |
-
- Transformers 4.32.1
|
| 117 |
-
- Pytorch 2.0.1+cu117
|
| 118 |
-
- Datasets 2.14.4
|
| 119 |
-
- Tokenizers 0.13.3
|
|
|
|
| 1 |
---
|
| 2 |
license: mit
|
| 3 |
+
language:
|
| 4 |
+
- ru
|
| 5 |
+
library_name: transformers
|
| 6 |
tags:
|
| 7 |
+
- text-generation-inference
|
|
|
|
|
|
|
|
|
|
| 8 |
---
|
| 9 |
|
|
|
|
|
|
|
|
|
|
| 10 |
# text-normalization-ru-new
|
| 11 |
+
Normalization for Russian text. Couldn't find any existing solutions (besides algorithms, don't like those) so made this.
|
| 12 |
+
It was designed for Silero TTS model which cant handle english and numbers for russian text to speach.
|
| 13 |
+
|
| 14 |
+
This model is a fine-tuned version of [cointegrated/rut5-small](https://huggingface.co/cointegrated/rut5-small) on https://www.kaggle.com/c/text-normalization-challenge-russian-language and additional dataset prepared by me using typical messages.
|
| 15 |
|
|
|
|
| 16 |
It achieves the following results on the evaluation set:
|
| 17 |
- Loss: 0.0177
|
| 18 |
- Mean Distance: 0
|
|
|
|
| 20 |
|
| 21 |
## Model description
|
| 22 |
|
| 23 |
+
Tiny T5 trained from scratch for normalizing Russian texts:
|
| 24 |
+
- translating numbers into words
|
| 25 |
+
- expanding abbreviations into phonetic letter combinations
|
| 26 |
+
- transliterating english into russian letters
|
| 27 |
+
- whatever else was in the dataset (see below)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|