Update README.md
Browse files
README.md
CHANGED
@@ -27,17 +27,21 @@ Here is how to use this model:
|
|
27 |
>>> from transformers import pipeline
|
28 |
>>> model_name = "roberta-large-emopillars-contextual"
|
29 |
>>> threshold = 0.5
|
30 |
-
>>> emotions = [
|
31 |
-
>>>
|
32 |
-
>>>
|
33 |
-
>>>
|
|
|
|
|
34 |
>>> label_to_emotion = dict(zip(list(range(len(emotions))), emotions))
|
35 |
>>> device = torch.device("cuda" if torch.cuda.is_available() else "CPU")
|
36 |
>>> pipe = pipeline("text-classification", model=model_name, truncation=True,
|
37 |
>>> return_all_scores=True, device=-1 if device.type=="cpu" else 0)
|
38 |
>>> # input in a format f"{context} {character}: \"{utterance}\""
|
39 |
-
>>> utterances_in_contexts = [
|
40 |
-
>>>
|
|
|
|
|
41 |
>>> outcome = pipe(utterances_in_contexts)
|
42 |
>>> dominant_classes = [
|
43 |
>>> [prediction for prediction in example if prediction['score'] >= threshold]
|
|
|
27 |
>>> from transformers import pipeline
|
28 |
>>> model_name = "roberta-large-emopillars-contextual"
|
29 |
>>> threshold = 0.5
|
30 |
+
>>> emotions = [
|
31 |
+
>>> "admiration", "amusement", "anger", "annoyance", "approval", "caring", "confusion",
|
32 |
+
>>> "curiosity", "desire", "disappointment", "disapproval", "disgust", "embarrassment",
|
33 |
+
>>> "excitement", "fear", "gratitude", "grief", "joy", "love", "nervousness", "optimism",
|
34 |
+
>>> "pride", "realization", "relief", "remorse", "sadness", "surprise", "neutral"
|
35 |
+
>>> ]
|
36 |
>>> label_to_emotion = dict(zip(list(range(len(emotions))), emotions))
|
37 |
>>> device = torch.device("cuda" if torch.cuda.is_available() else "CPU")
|
38 |
>>> pipe = pipeline("text-classification", model=model_name, truncation=True,
|
39 |
>>> return_all_scores=True, device=-1 if device.type=="cpu" else 0)
|
40 |
>>> # input in a format f"{context} {character}: \"{utterance}\""
|
41 |
+
>>> utterances_in_contexts = [
|
42 |
+
>>> "A user watched a video of a musical performance on YouTube. This user expresses an opinion and thoughts. User: \"Ok is it just me or is anyone else getting goosebumps too???\"",
|
43 |
+
>>> "User: \"Sorry\", Conversational agent: \"Sorry for what??\", User: \"Don’t know what to do\""
|
44 |
+
>>> ]
|
45 |
>>> outcome = pipe(utterances_in_contexts)
|
46 |
>>> dominant_classes = [
|
47 |
>>> [prediction for prediction in example if prediction['score'] >= threshold]
|