--- license: mit base_model: xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy - precision - recall - roc_auc - f1 model-index: - name: results_RoBERTa results: [] datasets: - alecmontero/dataset_tweetsmx_areasCPC language: - es library_name: transformers --- # results_RoBERTa This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1365 - Roc Auc: 0.8669 - Hamming Loss: 0.0454 - F1 Score: 0.7761 - Accuracy: 0.4712 - Precision: 0.7977 - Recall: 0.7665 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Roc Auc | Hamming Loss | F1 Score | Accuracy | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------------:|:--------:|:--------:|:---------:|:------:| | No log | 1.0 | 374 | 0.1904 | 0.6981 | 0.0674 | 0.4749 | 0.3440 | 0.7840 | 0.4297 | | 0.2476 | 2.0 | 748 | 0.1674 | 0.7439 | 0.0612 | 0.5672 | 0.3802 | 0.8482 | 0.5228 | | 0.1597 | 3.0 | 1122 | 0.1512 | 0.7955 | 0.0545 | 0.6516 | 0.4163 | 0.8172 | 0.6218 | | 0.1597 | 4.0 | 1496 | 0.1414 | 0.8087 | 0.0511 | 0.6736 | 0.4324 | 0.8251 | 0.6535 | | 0.1222 | 5.0 | 1870 | 0.1395 | 0.8344 | 0.0490 | 0.7153 | 0.4378 | 0.8190 | 0.7038 | | 0.09 | 6.0 | 2244 | 0.1385 | 0.8485 | 0.0477 | 0.7552 | 0.4645 | 0.8182 | 0.7315 | | 0.0663 | 7.0 | 2618 | 0.1391 | 0.8544 | 0.0466 | 0.7617 | 0.4712 | 0.7936 | 0.7401 | | 0.0663 | 8.0 | 2992 | 0.1365 | 0.8669 | 0.0454 | 0.7761 | 0.4712 | 0.7977 | 0.7665 | | 0.0461 | 9.0 | 3366 | 0.1375 | 0.8617 | 0.0460 | 0.7711 | 0.4699 | 0.7956 | 0.7569 | | 0.0293 | 10.0 | 3740 | 0.1388 | 0.8636 | 0.0448 | 0.7736 | 0.4926 | 0.7953 | 0.7592 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1