--- license: mit base_model: DeepESP/gpt2-spanish tags: - generated_from_trainer metrics: - accuracy - precision - recall model-index: - name: SciGPT2-ft-TweetAreas-ES results: [] --- # SciGPT2-ft-TweetAreas-ES This model is a fine-tuned version of [DeepESP/gpt2-spanish](https://huggingface.co/DeepESP/gpt2-spanish) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2090 - Roc Auc: 0.7863 - Hamming Loss: 0.0548 - F1 Score: 0.6523 - Accuracy: 0.4083 - Precision: 0.8301 - Recall: 0.6023 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Roc Auc | Hamming Loss | F1 Score | Accuracy | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------------:|:--------:|:--------:|:---------:|:------:| | 0.1499 | 1.0 | 747 | 0.1910 | 0.7062 | 0.0689 | 0.4861 | 0.3320 | 0.8506 | 0.4443 | | 0.1593 | 2.0 | 1494 | 0.1707 | 0.7546 | 0.0636 | 0.5862 | 0.3494 | 0.7958 | 0.5444 | | 0.1042 | 3.0 | 2241 | 0.1700 | 0.7718 | 0.0617 | 0.6133 | 0.3748 | 0.7891 | 0.5812 | | 0.0455 | 4.0 | 2988 | 0.1786 | 0.7934 | 0.0585 | 0.6533 | 0.3855 | 0.7900 | 0.6232 | | 0.0378 | 5.0 | 3735 | 0.1896 | 0.7903 | 0.0571 | 0.6564 | 0.3882 | 0.8020 | 0.6093 | | 0.0199 | 6.0 | 4482 | 0.1948 | 0.7983 | 0.0566 | 0.6627 | 0.3949 | 0.7763 | 0.6304 | | 0.0101 | 7.0 | 5229 | 0.2014 | 0.7888 | 0.0553 | 0.6625 | 0.3963 | 0.8127 | 0.6069 | | 0.0087 | 8.0 | 5976 | 0.2059 | 0.7830 | 0.0563 | 0.6507 | 0.3922 | 0.8271 | 0.5969 | | 0.0071 | 9.0 | 6723 | 0.2074 | 0.7888 | 0.0550 | 0.6587 | 0.4070 | 0.8304 | 0.6080 | | 0.0047 | 10.0 | 7470 | 0.2090 | 0.7863 | 0.0548 | 0.6523 | 0.4083 | 0.8301 | 0.6023 | ### Framework versions - Transformers 4.43.2 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1