alea-institute commited on
Commit
8ac5ffb
·
verified ·
1 Parent(s): 1176838

Update README and config files - README.md

Browse files
Files changed (1) hide show
  1. README.md +231 -56
README.md CHANGED
@@ -9,7 +9,10 @@ tags:
9
  - financial
10
  - mlm
11
  - roberta
 
12
  pipeline_tag: fill-mask
 
 
13
  widget:
14
  - text: "<|cls|> Under the Migratory<|mask|> Treaty Act, the <|sep|>"
15
  - example: "<|cls|> This<|mask|> Credit Agreement is hereby <|sep|>"
@@ -20,7 +23,7 @@ date: '2024-11-07T00:00:00.000Z'
20
 
21
  # kl3m-doc-pico-001
22
 
23
- `kl3m-doc-pico-001` is a domain-specific masked language model (MLM) based on the RoBERTa architecture, specifically designed for legal and financial document analysis. With approximately 40M parameters, it provides a compact yet effective model for specialized NLP tasks.
24
 
25
  ## Model Details
26
 
@@ -28,8 +31,13 @@ date: '2024-11-07T00:00:00.000Z'
28
  - **Size**: 40M parameters
29
  - **Hidden Size**: 256
30
  - **Layers**: 8
 
 
 
31
  - **Max Sequence Length**: 509
32
  - **Tokenizer**: [alea-institute/kl3m-004-128k-cased](https://huggingface.co/alea-institute/kl3m-004-128k-cased)
 
 
33
 
34
  ## Use Cases
35
 
@@ -40,107 +48,273 @@ This model is particularly useful for:
40
  - Understanding legal citations and references
41
  - Filling in missing terms in legal documents
42
  - Feature extraction for downstream legal analysis tasks
 
 
43
 
44
- As demonstrated in the examples, the model has strong knowledge of laws, regulations, and other domain-specific terminology.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
 
46
  ## Usage
47
 
48
- You can use this model for masked language modeling with the following code:
 
 
49
 
50
  ```python
51
- from transformers import AutoModelForMaskedLM, AutoTokenizer
52
- import torch
 
 
53
 
54
- # Load model and tokenizer
55
- tokenizer = AutoTokenizer.from_pretrained("alea-institute/kl3m-doc-pico-001")
56
- model = AutoModelForMaskedLM.from_pretrained("alea-institute/kl3m-doc-pico-001")
 
57
 
58
- # Example 1: Legal domain - Environmental law
59
- text = "<|cls|> Under the Migratory<|mask|> Treaty Act, the <|sep|>"
60
- inputs = tokenizer(text, return_tensors="pt")
61
- outputs = model(**inputs)
62
 
63
- # Get top predictions for masked token
64
- masked_index = torch.where(inputs.input_ids[0] == tokenizer.mask_token_id)[0].item()
65
- probs = outputs.logits[0, masked_index].softmax(dim=0)
66
- top_5 = torch.topk(probs, 5)
 
 
 
 
 
 
 
 
 
 
 
67
 
68
- print("Example 1 - Top 5 predictions:")
69
- for i, (score, idx) in enumerate(zip(top_5.values, top_5.indices)):
70
- token = tokenizer.decode(idx).strip()
71
- print(f"{i+1}. {token} ({score.item():.3f})")
72
 
73
  # Output:
74
- # Example 1 - Top 5 predictions:
75
- # 1. Bird (0.934)
76
- # 2. Species (0.028)
77
- # 3. Birds (0.006)
78
- # 4. Game (0.002)
79
- # 5. Fish (0.002)
80
-
81
- # Example 2: Financial domain - Credit agreement
82
- text = "<|cls|> This<|mask|> Credit Agreement is hereby <|sep|>"
83
- inputs = tokenizer(text, return_tensors="pt")
84
- outputs = model(**inputs)
85
-
86
- # Get top predictions for masked token
87
- masked_index = torch.where(inputs.input_ids[0] == tokenizer.mask_token_id)[0].item()
88
- probs = outputs.logits[0, masked_index].softmax(dim=0)
89
- top_5 = torch.topk(probs, 5)
90
-
91
- print("\nExample 2 - Top 5 predictions:")
92
- for i, (score, idx) in enumerate(zip(top_5.values, top_5.indices)):
93
- token = tokenizer.decode(idx).strip()
94
- print(f"{i+1}. {token} ({score.item():.3f})")
95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96
  # Output:
97
- # Example 2 - Top 5 predictions:
98
- # 1. Farm (0.300)
99
- # 2. Grant (0.036)
100
- # 3. Taxpayer (0.032)
101
- # 4. Negotiated (0.027)
102
- # 5. Credit (0.026)
 
 
 
 
103
  ```
104
 
105
  ## Training
106
 
107
  The model was trained on a diverse corpus of legal and financial documents, ensuring high-quality performance in these domains. It leverages the KL3M tokenizer which provides 9-17% more efficient tokenization for domain-specific content than cl100k_base or the LLaMA/Mistral tokenizers.
108
 
 
 
 
 
 
 
 
 
 
109
  ## Special Tokens
110
 
111
- This model uses custom special tokens which must be used explicitly:
112
 
113
- - CLS token: `<|cls|>` (ID: 5) - Should be added at the beginning of input text
114
  - MASK token: `<|mask|>` (ID: 6) - Used to mark tokens for prediction
115
- - SEP token: `<|sep|>` (ID: 4) - Should be added at the end of input text
116
  - PAD token: `<|pad|>` (ID: 2) - Used for padding sequences to a uniform length
117
  - BOS token: `<|start|>` (ID: 0) - Beginning of sequence
118
  - EOS token: `<|end|>` (ID: 1) - End of sequence
119
  - UNK token: `<|unk|>` (ID: 3) - Unknown token
120
 
 
 
 
 
 
 
121
  ## Limitations
122
 
123
  While compact compared to larger language models, this model has some limitations:
124
 
125
- - Limited world knowledge compared to larger or more broadly-trained models
126
  - Primarily focused on English legal and financial texts
127
  - Best suited for domain-specific rather than general-purpose tasks
 
 
128
 
129
  ## References
130
 
131
  - [KL3M Tokenizers: A Family of Domain-Specific and Character-Level Tokenizers for Legal, Financial, and Preprocessing Applications](https://arxiv.org/abs/2503.17247)
132
- - [The KL3M Data Project: Copyright-Clean Training Resources for Large Language Models]() (Forthcoming)
133
 
134
  ## Citation
135
 
136
  If you use this model in your research, please cite:
137
 
138
  ```bibtex
139
- @misc{bommarito2025kl3m,
 
 
 
 
 
 
 
 
140
  title={KL3M Tokenizers: A Family of Domain-Specific and Character-Level Tokenizers for Legal, Financial, and Preprocessing Applications},
141
- author={Bommarito II, Michael J. and Katz, Daniel Martin and Bommarito, Jillian},
 
 
 
 
 
 
 
142
  year={2025},
143
- eprint={2503.17247},
144
  archivePrefix={arXiv},
145
  primaryClass={cs.CL}
146
  }
@@ -156,5 +330,6 @@ The KL3M model family is maintained by the [ALEA Institute](https://aleainstitut
156
 
157
  - Email: [email protected]
158
  - Website: https://aleainstitute.ai
 
159
 
160
- ![https://aleainstitute.ai](https://aleainstitute.ai/images/alea-logo-ascii-1x1.png)
 
9
  - financial
10
  - mlm
11
  - roberta
12
+ - embedding
13
  pipeline_tag: fill-mask
14
+ tags_extended:
15
+ - feature-extraction
16
  widget:
17
  - text: "<|cls|> Under the Migratory<|mask|> Treaty Act, the <|sep|>"
18
  - example: "<|cls|> This<|mask|> Credit Agreement is hereby <|sep|>"
 
23
 
24
  # kl3m-doc-pico-001
25
 
26
+ `kl3m-doc-pico-001` is a domain-specific masked language model (MLM) based on the RoBERTa architecture, specifically designed for legal and financial document analysis. With approximately 40M parameters, it provides a compact yet effective model for specialized NLP tasks in both fill-mask prediction and feature extraction for document embeddings.
27
 
28
  ## Model Details
29
 
 
31
  - **Size**: 40M parameters
32
  - **Hidden Size**: 256
33
  - **Layers**: 8
34
+ - **Attention Heads**: 8
35
+ - **Intermediate Size**: 1024
36
+ - **Max Position Embeddings**: 512
37
  - **Max Sequence Length**: 509
38
  - **Tokenizer**: [alea-institute/kl3m-004-128k-cased](https://huggingface.co/alea-institute/kl3m-004-128k-cased)
39
+ - **Vector Dimension**: 256 (hidden_size)
40
+ - **Pooling Strategy**: CLS token or mean pooling
41
 
42
  ## Use Cases
43
 
 
48
  - Understanding legal citations and references
49
  - Filling in missing terms in legal documents
50
  - Feature extraction for downstream legal analysis tasks
51
+ - Document similarity and retrieval tasks
52
+ - Semantic search across legal and financial corpora
53
 
54
+ ## Performance
55
+
56
+ The model demonstrates strong performance on domain-specific tasks compared to general-purpose models of similar size. It shows particular strength in masked token prediction for legal and regulatory terminology.
57
+
58
+ ### Examples of Fill-Mask Performance
59
+
60
+ 1. Environmental Law:
61
+ - "Under the Migratory Bird Treaty Act, the..." → 93.4% confidence
62
+
63
+ 2. Financial Contracts:
64
+ - "This Farm Credit Agreement is hereby..." → 30.0% confidence
65
+
66
+ ## Standard Test Examples
67
+
68
+ Using our standardized test examples for comparing embedding models:
69
+
70
+ ### Fill-Mask Results
71
+
72
+ 1. **Contract Clause Heading**:
73
+ `"<|cls|> 8. REPRESENTATIONS AND<|mask|>. Each party hereby represents and warrants to the other party as of the date hereof as follows: <|sep|>"`
74
+
75
+ Top 5 predictions:
76
+ 1. APPLICATION (0.0384)
77
+ 2. PROCEDURES (0.0164)
78
+ 3. HEARING (0.0150)
79
+ 4. REGULATIONS (0.0119)
80
+ 5. DEFINITIONS (0.0117)
81
+
82
+ Note: The contract-specialized models show stronger performance on this task, with kl3m-doc-pico-contracts-001 predicting "WARRANTIES" with higher confidence and kl3m-doc-nano-001 with 0.927 confidence.
83
+
84
+ 2. **Defined Term Example**:
85
+ `"<|cls|> \"Effective<|mask|>\" means the date on which all conditions precedent set forth in Article V are satisfied or waived by the Administrative Agent. <|sep|>"`
86
+
87
+ Top 5 predictions:
88
+ 1. date (0.3148)
89
+ 2. Date (0.2616)
90
+ 3. Time (0.0220)
91
+ 4. Order (0.0213)
92
+ 5. Dates (0.0198)
93
+
94
+ 3. **Regulation Example**:
95
+ `"<|cls|> All transactions shall comply with the requirements set forth in the Truth in<|mask|> Act and its implementing Regulation Z. <|sep|>"`
96
+
97
+ Top 5 predictions:
98
+ 1. Lending (0.5241)
99
+ 2. the (0.1538)
100
+ 3. Disabilities (0.0708)
101
+ 4. America (0.0228)
102
+ 5. Truth (0.0147)
103
+
104
+ ### Document Similarity Results
105
+
106
+ Using the standardized document examples for embeddings:
107
+
108
+ | Document Pair | Cosine Similarity (CLS token) | Cosine Similarity (Mean pooling) |
109
+ |---------------|-------------------------------|----------------------------------|
110
+ | Court Complaint vs. Consumer Terms | 0.711 | 0.675 |
111
+ | Court Complaint vs. Credit Agreement | 0.847 | 0.833 |
112
+ | Consumer Terms vs. Credit Agreement | 0.828 | 0.709 |
113
+
114
+ Note how different pooling strategies affect similarity measurements. Mean pooling tends to capture more comprehensive document-level similarity, particularly between legal documents like complaints and agreements (0.833), while CLS token embeddings in this model show generally higher similarity values, particularly between Court Complaint and Credit Agreement (0.847).
115
 
116
  ## Usage
117
 
118
+ ### Masked Language Modeling
119
+
120
+ You can use this model for masked language modeling with the simple pipeline approach:
121
 
122
  ```python
123
+ from transformers import pipeline
124
+
125
+ # Load the fill-mask pipeline with the model
126
+ fill_mask = pipeline('fill-mask', model="alea-institute/kl3m-doc-pico-001")
127
 
128
+ # Example: Contract clause heading
129
+ # Note the mask token placement - directly adjacent to "AND" without space
130
+ text = "<|cls|> 8. REPRESENTATIONS AND<|mask|>. Each party hereby represents and warrants to the other party as of the date hereof as follows: <|sep|>"
131
+ results = fill_mask(text)
132
 
133
+ # Display predictions
134
+ print("Top predictions:")
135
+ for result in results:
136
+ print(f"- {result['token_str']} (score: {result['score']:.4f})")
137
 
138
+ # Output:
139
+ # Top predictions:
140
+ # - APPLICATION (score: 0.0384)
141
+ # - PROCEDURES (score: 0.0164)
142
+ # - HEARING (score: 0.0150)
143
+ # - REGULATIONS (score: 0.0119)
144
+ # - DEFINITIONS (score: 0.0117)
145
+ ```
146
+
147
+ You can also try other examples:
148
+
149
+ ```python
150
+ # Example: Defined term
151
+ text2 = "<|cls|> \"Effective<|mask|>\" means the date on which all conditions precedent set forth in Article V are satisfied or waived by the Administrative Agent. <|sep|>"
152
+ results2 = fill_mask(text2)
153
 
154
+ # Display predictions
155
+ print("Top predictions:")
156
+ for result in results2[:5]:
157
+ print(f"- {result['token_str']} (score: {result['score']:.4f})")
158
 
159
  # Output:
160
+ # Top predictions:
161
+ # - date (score: 0.3148)
162
+ # - Date (score: 0.2616)
163
+ # - Time (score: 0.0220)
164
+ # - Order (score: 0.0213)
165
+ # - Dates (score: 0.0198)
166
+ ```
167
+
168
+ ### Feature Extraction for Embeddings
 
 
 
 
 
 
 
 
 
 
 
 
169
 
170
+ ```python
171
+ from transformers import pipeline
172
+ import numpy as np
173
+ from sklearn.metrics.pairwise import cosine_similarity
174
+
175
+ # Load the feature-extraction pipeline
176
+ extractor = pipeline('feature-extraction', model="alea-institute/kl3m-doc-pico-001", return_tensors=True)
177
+
178
+ # Example legal documents
179
+ texts = [
180
+ # Court Complaint
181
+ "<|cls|> IN THE UNITED STATES DISTRICT COURT FOR THE EASTERN DISTRICT OF PENNSYLVANIA\n\nJOHN DOE,\nPlaintiff,\n\nvs.\n\nACME CORPORATION,\nDefendant.\n\nCIVIL ACTION NO. 21-12345\n\nCOMPLAINT\n\nPlaintiff John Doe, by and through his undersigned counsel, hereby files this Complaint against Defendant Acme Corporation, and in support thereof, alleges as follows: <|sep|>",
182
+
183
+ # Consumer Terms
184
+ "<|cls|> TERMS AND CONDITIONS\n\nLast Updated: April 10, 2025\n\nThese Terms and Conditions (\"Terms\") govern your access to and use of the Service. By accessing or using the Service, you agree to be bound by these Terms. If you do not agree to these Terms, you may not access or use the Service. These Terms constitute a legally binding agreement between you and the Company. <|sep|>",
185
+
186
+ # Credit Agreement
187
+ "<|cls|> CREDIT AGREEMENT\n\nDated as of April 10, 2025\n\nAmong\n\nACME BORROWER INC.,\nas the Borrower,\n\nBANK OF FINANCE,\nas Administrative Agent,\n\nand\n\nTHE LENDERS PARTY HERETO\n\nThis CREDIT AGREEMENT (\"Agreement\") is entered into as of April 10, 2025, among ACME BORROWER INC., a Delaware corporation (the \"Borrower\"), each lender from time to time party hereto (collectively, the \"Lenders\"), and BANK OF FINANCE, as Administrative Agent. <|sep|>"
188
+ ]
189
+
190
+ # Strategy 1: CLS token embeddings
191
+ cls_embeddings = []
192
+ for text in texts:
193
+ features = extractor(text)
194
+ # Get the CLS token (first token) embedding
195
+ features_array = features[0].numpy() if hasattr(features[0], 'numpy') else features[0]
196
+ cls_embedding = features_array[0]
197
+ cls_embeddings.append(cls_embedding)
198
+
199
+ # Calculate similarity between documents using CLS tokens
200
+ cls_similarity = cosine_similarity(np.vstack(cls_embeddings))
201
+ print("\nDocument similarity (CLS token):")
202
+ print(np.round(cls_similarity, 3))
203
+ # Output:
204
+ # [[1. 0.711 0.847]
205
+ # [0.711 1. 0.828]
206
+ # [0.847 0.828 1. ]]
207
+
208
+ # Strategy 2: Mean pooling
209
+ mean_embeddings = []
210
+ for text in texts:
211
+ features = extractor(text)
212
+ # Average over all tokens
213
+ features_array = features[0].numpy() if hasattr(features[0], 'numpy') else features[0]
214
+ mean_embedding = np.mean(features_array, axis=0)
215
+ mean_embeddings.append(mean_embedding)
216
+
217
+ # Calculate similarity using mean pooling
218
+ mean_similarity = cosine_similarity(np.vstack(mean_embeddings))
219
+ print("\nDocument similarity (Mean pooling):")
220
+ print(np.round(mean_similarity, 3))
221
+ # Output:
222
+ # [[1. 0.675 0.833]
223
+ # [0.675 1. 0.709]
224
+ # [0.833 0.709 1. ]]
225
+
226
+ # Print pairwise similarities
227
+ doc_names = ["Court Complaint", "Consumer Terms", "Credit Agreement"]
228
+ print("\nPairwise similarities:")
229
+ for i in range(len(doc_names)):
230
+ for j in range(i+1, len(doc_names)):
231
+ print(f"{doc_names[i]} vs. {doc_names[j]}:")
232
+ print(f" - CLS token: {cls_similarity[i, j]:.4f}")
233
+ print(f" - Mean pooling: {mean_similarity[i, j]:.4f}")
234
  # Output:
235
+ # Pairwise similarities:
236
+ # Court Complaint vs. Consumer Terms:
237
+ # - CLS token: 0.7112
238
+ # - Mean pooling: 0.6749
239
+ # Court Complaint vs. Credit Agreement:
240
+ # - CLS token: 0.8474
241
+ # - Mean pooling: 0.8331
242
+ # Consumer Terms vs. Credit Agreement:
243
+ # - CLS token: 0.8276
244
+ # - Mean pooling: 0.7087
245
  ```
246
 
247
  ## Training
248
 
249
  The model was trained on a diverse corpus of legal and financial documents, ensuring high-quality performance in these domains. It leverages the KL3M tokenizer which provides 9-17% more efficient tokenization for domain-specific content than cl100k_base or the LLaMA/Mistral tokenizers.
250
 
251
+ Training included both masked language modeling (MLM) objectives and attention to dense document representation for retrieval and classification tasks.
252
+
253
+ ## Intended Usage
254
+
255
+ This model is intended for both:
256
+
257
+ 1. **Masked Language Modeling**: Filling in missing words/terms in legal and financial documents
258
+ 2. **Document Embedding**: Generating fixed-length vector representations for document similarity and classification
259
+
260
  ## Special Tokens
261
 
262
+ This model includes the following special tokens:
263
 
264
+ - CLS token: `<|cls|>` (ID: 5) - Used for the beginning of input text
265
  - MASK token: `<|mask|>` (ID: 6) - Used to mark tokens for prediction
266
+ - SEP token: `<|sep|>` (ID: 4) - Used for the end of input text
267
  - PAD token: `<|pad|>` (ID: 2) - Used for padding sequences to a uniform length
268
  - BOS token: `<|start|>` (ID: 0) - Beginning of sequence
269
  - EOS token: `<|end|>` (ID: 1) - End of sequence
270
  - UNK token: `<|unk|>` (ID: 3) - Unknown token
271
 
272
+ Important usage notes:
273
+
274
+ When using the MASK token for predictions, be aware that this model uses a **space-prefixed BPE tokenizer**. The <|mask|> token should be placed IMMEDIATELY after the previous token with NO space, because most tokens in this tokenizer have an initial space encoded within them. For example: `"word<|mask|>"` rather than `"word <|mask|>"`.
275
+
276
+ This space-aware placement is crucial for getting accurate predictions, as demonstrated in our test examples.
277
+
278
  ## Limitations
279
 
280
  While compact compared to larger language models, this model has some limitations:
281
 
282
+ - Limited parameter count (40M) means it captures less nuance than larger language models
283
  - Primarily focused on English legal and financial texts
284
  - Best suited for domain-specific rather than general-purpose tasks
285
+ - Maximum sequence length of 512 tokens may require chunking for lengthy documents
286
+ - Requires domain expertise to interpret results effectively
287
 
288
  ## References
289
 
290
  - [KL3M Tokenizers: A Family of Domain-Specific and Character-Level Tokenizers for Legal, Financial, and Preprocessing Applications](https://arxiv.org/abs/2503.17247)
291
+ - [The KL3M Data Project: Copyright-Clean Training Resources for Large Language Models](https://arxiv.org/abs/2504.07854)
292
 
293
  ## Citation
294
 
295
  If you use this model in your research, please cite:
296
 
297
  ```bibtex
298
+ @misc{kl3m-doc-pico-001,
299
+ author = {ALEA Institute},
300
+ title = {kl3m-doc-pico-001: A Domain-Specific Language Model for Legal and Financial Text Analysis},
301
+ year = {2024},
302
+ publisher = {Hugging Face},
303
+ howpublished = {\url{https://huggingface.co/alea-institute/kl3m-doc-pico-001}}
304
+ }
305
+
306
+ @article{bommarito2025kl3m,
307
  title={KL3M Tokenizers: A Family of Domain-Specific and Character-Level Tokenizers for Legal, Financial, and Preprocessing Applications},
308
+ author={Bommarito, Michael J and Katz, Daniel Martin and Bommarito, Jillian},
309
+ journal={arXiv preprint arXiv:2503.17247},
310
+ year={2025}
311
+ }
312
+
313
+ @misc{bommarito2025kl3mdata,
314
+ title={The KL3M Data Project: Copyright-Clean Training Resources for Large Language Models},
315
+ author={Bommarito II, Michael J. and Bommarito, Jillian and Katz, Daniel Martin},
316
  year={2025},
317
+ eprint={2504.07854},
318
  archivePrefix={arXiv},
319
  primaryClass={cs.CL}
320
  }
 
330
 
331
  - Email: [email protected]
332
  - Website: https://aleainstitute.ai
333
+ - GitHub: https://github.com/alea-institute/kl3m-model-research
334
 
335
+ ![logo](https://aleainstitute.ai/images/alea-logo-ascii-1x1.png)