--- language: - en - de tags: - text-classification - ticket classification - multilingual - email-intent-detection - customer-support - xlm-roberta license: apache-2.0 datasets: - private model-index: - name: xlm-roberta-ticket-classifier results: - task: type: text-classification name: Email Ticket Classification dataset: name: german-english-email-ticket-classification type: private metrics: - name: Accuracy (Type) type: accuracy value: 0.8573 - name: Accuracy (Queue) type: accuracy value: 0.5189 - name: F1 Score (Type) type: f1 value: 0.8573 - name: F1 Score (Queue) type: f1 value: 0.5209 --- # XLM-RoBERTa Ticket Classifier A multilingual email/ticket classifier fine-tuned from `xlm-roberta-base` to categorize customer support tickets in English and German. It predicts both routing category and issue type, helping automate ticket triage, intent detection, and prioritization in multilingual helpdesk environments. ## Model Details - **Base model**: `xlm-roberta-base` - **Languages**: English πŸ‡¬πŸ‡§ & German πŸ‡©πŸ‡ͺ - **Task**: Multi-class text classification - **Training data**: [german-english-email-ticket-classification](https://huggingface.co/datasets/ale-dp/german-english-email-ticket-classification) - **Tokenizer**: SentencePiece BPE tokenizer - **Framework**: πŸ€— Transformers ## Classification Schema This model performs **multi-head classification**, predicting both: ### 🎯 Queue (Routing Category) - Billing and Payments - Customer Service - General Inquiry - Human Resources - IT Support - Product Support - Returns and Exchanges - Sales and Pre-Sales - Service Outages and Maintenance - Technical Support ### πŸ› οΈ Type (Issue Nature) - Incident - Request - Problem - Change ## πŸ“ˆ Model Performance Summary | Metric | Value | |-------------------------|---------| | **Accuracy (Type)** | 85.73% | | **Accuracy (Queue)** | 51.89% | | **F1 Score (Type)** | 85.73% | | **F1 Score (Queue)** | 52.09% | This model demonstrates strong performance on **type classification**, while **queue prediction** reflects the inherent complexity of routing logic across overlapping categories. πŸ” _More detailed metrics, visualizations, and training curves available on the [W&B dashboard](https://wandb.ai/alikhalaji-/bilingual_ticket_classifier)_ ## Intended Uses - Classify incoming tickets into predefined categories - Automate support ticket routing - Detect customer intent in multilingual environments - Integrate with helpdesk platforms like Zendesk or Freshdesk ## πŸš€ Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline model_id = "ale-dp/xlm-roberta-ticket-classifier" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForSequenceClassification.from_pretrained(model_id) classifier = pipeline("text-classification", model=model, tokenizer=tokenizer) text = "Hallo, Die Data-Analytics-Plattform funktioniert nicht richtig und es werden unkorrekte Investment-Analyse-Fehlermeldungen generiert. Dies kΓΆnnte auf einen Software-Fehler hindeuten." result = classifier(text) print(result) ``` ### Created by: ***[α΄€ΚŸΙͺ α΄‹Κœα΄€ΚŸα΄€α΄ŠΙͺ](https://github.com/alikhalajii)*** ## Citation If you use this model, please cite: ```bibtex @misc{xlm-roberta-ticket-classifier, author = {Ali Khalaji}, title = {XLM-RoBERTa Ticket Classifier}, year = {2025}, url = {https://huggingface.co/ale-dp/xlm-roberta-ticket-classifier} }