Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
- de
|
5 |
+
tags:
|
6 |
+
- text-classification
|
7 |
+
- ticket classification
|
8 |
+
- multilingual
|
9 |
+
- email-intent-detection
|
10 |
+
- customer-support
|
11 |
+
- xlm-roberta
|
12 |
+
license: apache-2.0
|
13 |
+
datasets:
|
14 |
+
- private
|
15 |
+
model-index:
|
16 |
+
- name: xlm-roberta-ticket-classifier
|
17 |
+
results:
|
18 |
+
- task:
|
19 |
+
type: text-classification
|
20 |
+
name: Email Ticket Classification
|
21 |
+
dataset:
|
22 |
+
name: german-english-email-ticket-classification
|
23 |
+
type: private
|
24 |
+
metrics:
|
25 |
+
- name: Accuracy (Type)
|
26 |
+
type: accuracy
|
27 |
+
value: 0.8573
|
28 |
+
- name: Accuracy (Queue)
|
29 |
+
type: accuracy
|
30 |
+
value: 0.5189
|
31 |
+
- name: F1 Score (Type)
|
32 |
+
type: f1
|
33 |
+
value: 0.8573
|
34 |
+
- name: F1 Score (Queue)
|
35 |
+
type: f1
|
36 |
+
value: 0.5209
|
37 |
+
|
38 |
+
---
|
39 |
+
|
40 |
+
# XLM-RoBERTa Ticket Classifier
|
41 |
+
|
42 |
+
A multilingual email/ticket classifier fine-tuned from `xlm-roberta-base` to categorize customer support tickets in English and German. It predicts both routing category and issue type, helping automate ticket triage, intent detection, and prioritization in multilingual helpdesk environments.
|
43 |
+
|
44 |
+
|
45 |
+
## Model Details
|
46 |
+
|
47 |
+
- **Base model**: `xlm-roberta-base`
|
48 |
+
- **Languages**: English 🇬🇧 & German 🇩🇪
|
49 |
+
- **Task**: Multi-class text classification
|
50 |
+
- **Training data**: [german-english-email-ticket-classification](https://huggingface.co/datasets/ale-dp/german-english-email-ticket-classification)
|
51 |
+
- **Tokenizer**: SentencePiece BPE tokenizer
|
52 |
+
- **Framework**: 🤗 Transformers
|
53 |
+
|
54 |
+
## Classification Schema
|
55 |
+
|
56 |
+
This model performs **multi-head classification**, predicting both:
|
57 |
+
|
58 |
+
### 🎯 Queue (Routing Category)
|
59 |
+
- Billing and Payments
|
60 |
+
- Customer Service
|
61 |
+
- General Inquiry
|
62 |
+
- Human Resources
|
63 |
+
- IT Support
|
64 |
+
- Product Support
|
65 |
+
- Returns and Exchanges
|
66 |
+
- Sales and Pre-Sales
|
67 |
+
- Service Outages and Maintenance
|
68 |
+
- Technical Support
|
69 |
+
|
70 |
+
### 🛠️ Type (Issue Nature)
|
71 |
+
- Incident
|
72 |
+
- Request
|
73 |
+
- Problem
|
74 |
+
- Change
|
75 |
+
|
76 |
+
## 📈 Model Performance Summary
|
77 |
+
|
78 |
+
| Metric | Value |
|
79 |
+
|-------------------------|---------|
|
80 |
+
| **Accuracy (Type)** | 85.73% |
|
81 |
+
| **Accuracy (Queue)** | 51.89% |
|
82 |
+
| **F1 Score (Type)** | 85.73% |
|
83 |
+
| **F1 Score (Queue)** | 52.09% |
|
84 |
+
|
85 |
+
This model demonstrates strong performance on **type classification**, while **queue prediction** reflects the inherent complexity of routing logic across overlapping categories.
|
86 |
+
|
87 |
+
🔍 _More detailed metrics, visualizations, and training curves available on the [W&B dashboard](https://wandb.ai/alikhalaji-/bilingual_ticket_classifier)_
|
88 |
+
|
89 |
+
## Intended Uses
|
90 |
+
|
91 |
+
- Classify incoming tickets into predefined categories
|
92 |
+
- Automate support ticket routing
|
93 |
+
- Detect customer intent in multilingual environments
|
94 |
+
- Integrate with helpdesk platforms like Zendesk or Freshdesk
|
95 |
+
|
96 |
+
## 🚀 Usage
|
97 |
+
|
98 |
+
```python
|
99 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
100 |
+
|
101 |
+
model_id = "ale-dp/xlm-roberta-ticket-classifier"
|
102 |
+
|
103 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
104 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_id)
|
105 |
+
|
106 |
+
classifier = pipeline("text-classification", model=model, tokenizer=tokenizer)
|
107 |
+
|
108 |
+
text = "Hallo, Die Data-Analytics-Plattform funktioniert nicht richtig und es werden unkorrekte Investment-Analyse-Fehlermeldungen generiert. Dies könnte auf einen Software-Fehler hindeuten."
|
109 |
+
|
110 |
+
result = classifier(text)
|
111 |
+
print(result)
|
112 |
+
```
|
113 |
+
### Created by:
|
114 |
+
***[ᴀʟɪ ᴋʜᴀʟᴀᴊɪ](https://github.com/alikhalajii)***
|
115 |
+
|
116 |
+
## Citation
|
117 |
+
|
118 |
+
If you use this model, please cite:
|
119 |
+
|
120 |
+
```bibtex
|
121 |
+
@misc{xlm-roberta-ticket-classifier,
|
122 |
+
author = {Ali Khalaji},
|
123 |
+
title = {XLM-RoBERTa Ticket Classifier},
|
124 |
+
year = {2025},
|
125 |
+
url = {https://huggingface.co/ale-dp/xlm-roberta-ticket-classifier}
|
126 |
+
}
|
127 |
+
|