--- library_name: transformers tags: - legal datasets: - ealvaradob/phishing-dataset language: - en metrics: - accuracy - precision - recall - f1 base_model: - distilbert/distilbert-base-uncased --- # 📧 distilbert-finetuned-phishing A fine-tuned `distilbert-base-uncased` model for phishing email classification. This model is designed to distinguish between **safe** and **phishing** emails using natural language content. [Colab Notebook](https://colab.research.google.com/drive/1_M5BVn9agRHUSN3wBPebfxfOpBqTJcwh?usp=sharing) --- ## 🧪 Evaluation Results The model was trained on 77,677 emails and evaluated with the following results: | Metric | Value | |---------------|---------| | Accuracy | 0.9639 | | Precision | 0.9648 | | Recall | 0.9489 | | F1 Score | 0.9568 | | Eval Loss | 0.1326 | --- ### ⚙️ Training Configuration TrainingArguments( output_dir="./hf-phishing-model", evaluation_strategy="epoch", save_strategy="epoch", learning_rate=2e-5, per_device_train_batch_size=16, per_device_eval_batch_size=64, num_train_epochs=3, weight_decay=0.01, logging_dir="./logs", load_best_model_at_end=True, fp16=torch.cuda.is_available(), )