{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7959e0553cc0>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691003525458624549, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAPVUoz6YZLg/Dyuov8iy8z1Veow/r86Kvvaqy705jWu+TvGwPqzHpj61fEQ/vRQlP6bg7T6rVBjA4+MnP7AU5T9bCuG9F8ObviENZz0dArg/EV9Xva1PpT/FikC+Hu35PSw7gj8kZgfAqRGlPpxYz7/2CD6/7AqnPl6Vrj4cN6i+vXkGwF06hj5OHxW/DVt7vtYKZj+ndOO/zy6lvhY1+j0iPgm9f2UtwNHmiT8Emym9i2o8Pp+yHsAIRpU+HoHTPKVfkz/cQjk/A9FUPtx3S78sO4I/ugLyPqkRpT4GCR4/i41iPnslrj8u/42/ng+5Pq9lkj+ZN1G+4F37PYEtLb8tZGq/036bvxwMwz8DyDi+1PaFv+3bdL9TA689vX4IwNHHsL/qZzK/TKAhPwUuIz1Nh7o+Ss6VPgoK6z4dgCg/LDuCPyRmB8CpEaU+nFjPv7HHxj2YcM4/ldPtv24+PD82Up0/rB28vvk9i75Yh0S/+Vyzv+XGAb9kKYA/rbWevxvswL87nNk+ITr4PSucgr+q+MG/djXFPsFzKT8r2eA8rZFSP7xZ6r97vwA/qe6bPzmde7+6AvI+qRGlPpxYz7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADk4LY2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAG3XmvQAAAAA8aty/AAAAAMiBxD0AAAAA9w3nPwAAAAAu/ty9AAAAAB9E9D8AAAAAjTYMvgAAAAC+zP2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgGM3NAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLrTOzwAAAAAZhvjvwAAAAAU9/09AAAAAFUV3D8AAAAAIiEvPAAAAABu3/Q/AAAAAOz08D0AAAAANILkvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ81KTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC/3O+6AAAAAI8nAMAAAAAA0KmnvQAAAAC6Ves/AAAAAHpW4D0AAAAAbw72PwAAAACUiaq9AAAAAOsx/r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7D5Y2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAeur5vQAAAACEWfS/AAAAAC6NljwAAAAAbnbiPwAAAADRSbe8AAAAAB8Q/z8AAAAAvROXvQAAAAC7JwHAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJbxwYR/ViGMAWyUTegDjAF0lEdAqPZ9Yp2ECnV9lChoBkdAlvSUgfU4JmgHTegDaAhHQKj6RRNyo4x1fZQoaAZHQJVzZpmEoORoB03oA2gIR0Co/f3JYDDCdX2UKGgGR0CXVvz41xbTaAdN6ANoCEdAqP7VnscABHV9lChoBkdAl9yvvKEFn2gHTegDaAhHQKkCeTFERap1fZQoaAZHQJgw6M3qAz5oB03oA2gIR0CpB/vIn0CjdX2UKGgGR0CW2JjOcDr7aAdN6ANoCEdAqQwqVjZtenV9lChoBkdAlnUEFjd56mgHTegDaAhHQKkNBCu2ZzB1fZQoaAZHQJbtqbYsd1doB03oA2gIR0CpEJoGQjlgdX2UKGgGR0CWtsgMMI/raAdN6ANoCEdAqRRtD0Dlo3V9lChoBkdAl82G+sYEXGgHTegDaAhHQKkYKWrwOON1fZQoaAZHQJjEjL6k691oB03oA2gIR0CpGQOEmICVdX2UKGgGR0CX6o6P8yeqaAdN6ANoCEdAqRyR0uDjBHV9lChoBkdAl/6lRDTjN2gHTegDaAhHQKkhvgPVd5Z1fZQoaAZHQJfhYXwb2lFoB03oA2gIR0CpJi7bcoH+dX2UKGgGR0CXaGTKDCgsaAdN6ANoCEdAqSb5fYzzmXV9lChoBkdAke3JuVHFxWgHTegDaAhHQKkqe2JBPbh1fZQoaAZHQJaOulchTwVoB03oA2gIR0CpLiQ04zacdX2UKGgGR0CWkgYJE6T4aAdN6ANoCEdAqTHbbJwKjXV9lChoBkdAl0YcPWhAW2gHTegDaAhHQKkysjGkvbp1fZQoaAZHQJhutof0VahoB03oA2gIR0CpNkSEL6UJdX2UKGgGR0CWrDvL5h0AaAdN6ANoCEdAqTr1J8OTaHV9lChoBkdAmEow7T2FnWgHTegDaAhHQKk/7Ynv2Gt1fZQoaAZHQJZ4mXqqwQloB03oA2gIR0CpQMAq3EyddX2UKGgGR0CaSgS39aUzaAdN6ANoCEdAqURWjdpItnV9lChoBkdAmKIYFV1fV2gHTegDaAhHQKlINM9r4351fZQoaAZHQJUjW9TP0I1oB03oA2gIR0CpS/2bG3nZdX2UKGgGR0CXekOARTS9aAdN6ANoCEdAqUzP7YTTOXV9lChoBkdAkTPRoRIz32gHTegDaAhHQKlQa23rleZ1fZQoaAZHQJQeaVcD8tRoB03oA2gIR0CpVSGVAzHkdX2UKGgGR0CVdFxYJVsDaAdN6ANoCEdAqVok6q8143V9lChoBkdAlkIL56+nImgHTegDaAhHQKlbBi83+/B1fZQoaAZHQJWCcsPJ7sxoB03oA2gIR0CpXqzJQtSRdX2UKGgGR0CU6F7k4m1IaAdN6ANoCEdAqWJq9h7VrnV9lChoBkdAlvHWvbGm12gHTegDaAhHQKlmJHmzSkV1fZQoaAZHQJTzvI6r/85oB03oA2gIR0CpZv5p8F6idX2UKGgGR0CYDz2/SH/MaAdN6ANoCEdAqWqfKZDzAnV9lChoBkdAl6VgVwgkkmgHTegDaAhHQKlvD79AHFB1fZQoaAZHQJQengpBomJoB03oA2gIR0CpdGhPTG5udX2UKGgGR0CWISZ13dKvaAdN6ANoCEdAqXVAPkJa7nV9lChoBkdAlYCvhIe5nWgHTegDaAhHQKl43tMwlB11fZQoaAZHQJX/17rs0HhoB03oA2gIR0CpfI7ZezD5dX2UKGgGR0CK6PCyhSLqaAdN6ANoCEdAqYBBP9DQaHV9lChoBkdAmY6rXQMQVmgHTegDaAhHQKmBEll9Sdh1fZQoaAZHQJgDN3X7LuBoB03oA2gIR0CphMbEP1+RdX2UKGgGR0CWS00JWvKVaAdN6ANoCEdAqYjWkrPMS3V9lChoBkdAlhxSIUJv52gHTegDaAhHQKmOZGhEjPh1fZQoaAZHQJfjcpCrtE5oB03oA2gIR0Cpjzmjj7yhdX2UKGgGR0CMG0m/nGKiaAdN6ANoCEdAqZLavC/Gl3V9lChoBkdAlro09ECvHWgHTegDaAhHQKmWmUGmk311fZQoaAZHQJVn5yU9pypoB03oA2gIR0Cpmk6guh9LdX2UKGgGR0CTzAIOH310aAdN6ANoCEdAqZsjBGhEjXV9lChoBkdAlLu5LuhK2GgHTegDaAhHQKme0S8J2Md1fZQoaAZHQJVnDbDdgv1oB03oA2gIR0CpoppL/S6UdX2UKGgGR0CMFJKW9lEraAdN6ANoCEdAqagotYjjaXV9lChoBkdAksadOM2m52gHTegDaAhHQKmpOZzgdfd1fZQoaAZHQJISV/0/W2BoB03oA2gIR0CprNQRwqAjdX2UKGgGR0CU0gUfPompaAdN6ANoCEdAqbCFnCfpU3V9lChoBkdAl/vFurIYFmgHTegDaAhHQKm0NATqSox1fZQoaAZHQJfeOvkili1oB03oA2gIR0CptRHjQzDXdX2UKGgGR0CXsHTW5H3DaAdN6ANoCEdAqbic5XEIgXV9lChoBkdAmZdnKfWc0GgHTegDaAhHQKm8S3o9s8B1fZQoaAZHQJk2x0ZFXq9oB03oA2gIR0CpwZjhtLtedX2UKGgGR0CZFV+wTufFaAdN6ANoCEdAqcLweo1k2HV9lChoBkdAmbkDi4rjHWgHTegDaAhHQKnGvs3yZrp1fZQoaAZHQJmtiki2UjdoB03oA2gIR0CpymtAcDKYdX2UKGgGR0CT9F1eBxxUaAdN6ANoCEdAqc4QPkJa7nV9lChoBkdAm4ELZ8KG+WgHTegDaAhHQKnO4qebutx1fZQoaAZHQJqzVAlfJFNoB03oA2gIR0Cp0m7drO7hdX2UKGgGR0CYScTNt65YaAdN6ANoCEdAqdYYKc/dI3V9lChoBkdAmi9ofSx7iWgHTegDaAhHQKna6UC7sfJ1fZQoaAZHQJjcjlzU7S1oB03oA2gIR0Cp3CwaR6njdX2UKGgGR0CWzT/FirksaAdN6ANoCEdAqeBzkMkQgHV9lChoBkdAmGFC2+fyw2gHTegDaAhHQKnkIQmNR3x1fZQoaAZHQJY2MWtU4rBoB03oA2gIR0Cp59FenhsJdX2UKGgGR0CXzwoLG7z1aAdN6ANoCEdAqeif9Hc1wnV9lChoBkdAmKraji4rjGgHTegDaAhHQKnsKWepXIV1fZQoaAZHQJlr1tZV4otoB03oA2gIR0Cp79/WUbDNdX2UKGgGR0CZYZ8M/hVEaAdN6ANoCEdAqfQpzaK1onV9lChoBkdAmRsAPuogm2gHTegDaAhHQKn1X+4smOV1fZQoaAZHQJefzlFMIu5oB03oA2gIR0Cp+iJZOi35dX2UKGgGR0CYV5QhfShKaAdN6ANoCEdAqf3xr1uivnV9lChoBkdAlw45byH2y2gHTegDaAhHQKoBqGqxTsJ1fZQoaAZHQJiyJQemvW9oB03oA2gIR0CqAoOh0yP/dX2UKGgGR0CXgH9f1HvuaAdN6ANoCEdAqgYax5cC5nV9lChoBkdAllsW3WnTAmgHTegDaAhHQKoJ1b3XZoR1fZQoaAZHQJbNt6Y3Ns5oB03oA2gIR0CqDe65Xlr/dX2UKGgGR0CV1ON2C/XYaAdN6ANoCEdAqg80Tg2qDXV9lChoBkdAl1KvxtpEhWgHTegDaAhHQKoUQ6gdwNt1fZQoaAZHQJWqfBKtga5oB03oA2gIR0CqF/n/1g6VdX2UKGgGR0CUalTPBzmwaAdN6ANoCEdAqhuy4FzMinV9lChoBkdAk7mlYlpoK2gHTegDaAhHQKocgX3QD3d1fZQoaAZHQJcty4Vh1DBoB03oA2gIR0CqIBQ+EAYIdX2UKGgGR0CVc4G2TgVHaAdN6ANoCEdAqiPFjVhCt3V9lChoBkdAlrLklZ5iVmgHTegDaAhHQKoncaz/p+t1fZQoaAZHQJeZGJWNm19oB03oA2gIR0CqKLEzfrKOdX2UKGgGR0CX8CRHww0waAdN6ANoCEdAqi4eLaVUuXV9lChoBkdAlvegZsKsuGgHTegDaAhHQKoxySsbNr11fZQoaAZHQJh4Pbuc+aBoB03oA2gIR0CqNWfHHWBjdX2UKGgGR0CYZclk6LflaAdN6ANoCEdAqjY5YeT3ZnVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}