--- license: mit library_name: transformers datasets: - stanfordnlp/sst2 language: - en base_model: - distilbert/distilbert-base-uncased pipeline_tag: text-classification tags: - legal - PyTorch - text-classification - sentiment-analysis --- # Simple Text Classifier This is a fine-tuned model for text classification based on `distilbert-base-uncased`. ## Model Details - Model Type: Text Classification - Number of Classes: 2 - Hidden Size: 768 ## Usage ```python from transformers import AutoTokenizer from huggingface_text_classifier.model import SimpleTextClassifier # Load model and tokenizer tokenizer = AutoTokenizer.from_pretrained("ajinathgh/sentiment_analysis") model = SimpleTextClassifier.from_pretrained("ajinathgh/sentiment_analysis") # Prepare input inputs = tokenizer("Example text to classify", return_tensors="pt") # Get predictions outputs = model(**inputs) predicted_class = outputs.argmax(-1).item() ```