--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: wav2vec2-base-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.83 --- # wav2vec2-base-finetuned-gtzan This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.6771 - Accuracy: 0.83 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 4.0763 | 1.0 | 57 | 1.9012 | 0.54 | | 3.2763 | 2.0 | 114 | 1.4578 | 0.69 | | 2.5297 | 3.0 | 171 | 1.4215 | 0.56 | | 1.9816 | 4.0 | 228 | 1.0966 | 0.66 | | 1.7171 | 5.0 | 285 | 0.8921 | 0.76 | | 1.4619 | 6.0 | 342 | 0.7647 | 0.82 | | 1.3116 | 7.0 | 399 | 0.6880 | 0.85 | | 1.1145 | 8.0 | 456 | 0.7591 | 0.77 | | 0.7336 | 9.0 | 513 | 0.6362 | 0.85 | | 0.6123 | 9.8319 | 560 | 0.6771 | 0.83 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0