MikeDoes commited on
Commit
83ef30d
·
verified ·
1 Parent(s): df37b72

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +47 -45
README.md CHANGED
@@ -31,83 +31,83 @@ model-index:
31
  split: test
32
  metrics:
33
  - type: f1
34
- value: 0.9374
35
  name: F1 Score
36
  - type: precision
37
- value: 0.8943
38
  name: Precision
39
  - type: recall
40
- value: 0.9849
41
  name: Recall
42
  - type: accuracy
43
- value: 0.9581
44
  name: Accuracy
45
  ---
46
 
47
- ## Multilingual Categorical Anonymiser OpenPII (Ai4Privacy)
48
 
49
- This model is designed to **redact and classify Personally Identifiable Information (PII)** from multilingual text. It has been fine-tuned on the [open-pii-masking-500k-ai4privacy](https://huggingface.co/datasets/ai4privacy/open-pii-masking-500k-ai4privacy) dataset and supports multiple languages including French (fr), English (en), German (de), Telugu (te), Hindi (hi), Italian (it), Spanish (es), and Dutch (nl).
50
 
51
  ---
52
 
53
  ## Evaluation Metrics
54
 
55
- The table below summarizes the detailed evaluation results per PII label:
56
 
57
  | **Label** | **TP** | **FP** | **FN** | **Accuracy** | **Precision** | **Recall** | **F1 Score** |
58
  |--------------------|:------:|:------:|:------|:------------:|:-------------:|:----------:|:------------:|
59
- | SURNAME | 2838 | 882 | 30 | 75.68% | 76.29% | 98.95% | 86.16% |
60
- | O (Non-PII) | 0 | 285 | 0 | 99.50% | n/a | n/a | n/a |
61
- | TIME | 1936 | 0 | 0 | 100.0% | 100.0% | 100.0% | 100.0% |
62
- | DRIVERLICENSENUM | 351 | 154 | 2 | 69.23% | 69.50% | 99.43% | 81.82% |
63
- | PASSPORTNUM | 321 | 243 | 2 | 56.71% | 56.91% | 99.38% | 72.38% |
64
- | GIVENNAME | 6836 | 734 | 150 | 88.55% | 90.30% | 97.85% | 93.93% |
65
- | TELEPHONENUM | 3634 | 6 | 1 | 99.81% | 99.84% | 99.97% | 99.90% |
66
- | BUILDINGNUM | 370 | 42 | 14 | 86.85% | 89.81% | 96.35% | 92.96% |
67
- | AGE | 166 | 1 | 2 | 98.22% | 99.40% | 98.81% | 99.10% |
68
- | DATE | 2335 | 0 | 0 | 100.0% | 100.0% | 100.0% | 100.0% |
69
- | CITY | 1529 | 163 | 110 | 84.85% | 90.37% | 93.29% | 91.80% |
70
- | TITLE | 295 | 68 | 21 | 76.82% | 81.27% | 93.35% | 86.89% |
71
- | IDCARDNUM | 1651 | 339 | 30 | 81.73% | 82.96% | 98.22% | 89.95% |
72
- | GENDER | 104 | 17 | 0 | 85.95% | 85.95% | 100.0% | 92.44% |
73
- | CREDITCARDNUMBER | 525 | 29 | 4 | 94.09% | 94.77% | 99.24% | 96.95% |
74
- | SEX | 58 | 19 | 2 | 73.42% | 75.32% | 96.67% | 84.67% |
75
- | STREET | 1317 | 56 | 14 | 94.95% | 95.92% | 98.95% | 97.41% |
76
- | TAXNUM | 243 | 94 | 20 | 68.07% | 72.11% | 92.40% | 81.00% |
77
- | EMAIL | 2608 | 0 | 0 | 100.0% | 100.0% | 100.0% | 100.0% |
78
- | SOCIALNUM | 306 | 103 | 13 | 72.51% | 74.82% | 95.92% | 84.07% |
79
- | ZIPCODE | 366 | 48 | 12 | 85.92% | 88.41% | 96.83% | 92.42% |
80
 
81
  ### Overall Evaluation
82
- - **Accuracy:** 95.81%
83
- - **Precision:** 89.43%
84
- - **Recall:** 98.49%
85
- - **F1 Score:** 93.74%
86
 
87
- - **Total True Positives (TP):** 27,789
88
- - **Total False Positives (FP):** 3,283
89
- - **Total False Negatives (FN):** 427
90
 
91
  ### Macro-Averaged Metrics
92
- - **Accuracy:** 85.37%
93
- - **Precision:** 82.09%
94
- - **Recall:** 93.12%
95
- - **F1 Score:** 86.85%
96
 
97
  ---
98
 
99
  ## Model Behavior & Limitations
100
 
101
  - **Evaluation Focus:**
102
- The metrics shown above reflect performance on the test split of the [open-pii-masking-500k-ai4privacy](https://huggingface.co/datasets/ai4privacy/open-pii-masking-500k-ai4privacy) dataset. This model not only redacts PII but also classifies it into specific categories (e.g., SURNAME, EMAIL, etc.). Real-world performance may vary depending on the text domain and language, so additional validation is recommended. For support, contact **[email protected]**.
103
 
104
  - **Strengths:**
105
- - High recall (98.49%) ensures most PII is detected.
106
- - Perfect performance (100% F1) on labels like TIME, DATE, and EMAIL.
107
 
108
  - **Limitations:**
109
- - Lower precision for certain labels (e.g., PASSPORTNUM at 56.91%) indicates a higher rate of false positives.
110
- - The "O" (Non-PII) label has no true positives, so precision and recall are not applicable (n/a).
111
 
112
  ---
113
 
@@ -120,4 +120,6 @@ This model card details the evaluation metrics and fine-tuning parameters for th
120
 
121
  ---
122
 
123
- *Ai4Privacy – Committed to protecting personal data in the age of AI.*
 
 
 
31
  split: test
32
  metrics:
33
  - type: f1
34
+ value: 0.9150
35
  name: F1 Score
36
  - type: precision
37
+ value: 0.8761
38
  name: Precision
39
  - type: recall
40
+ value: 0.9576
41
  name: Recall
42
  - type: accuracy
43
+ value: 0.9503
44
  name: Accuracy
45
  ---
46
 
47
+ # Multilingual Anonymiser OpenPII (Ai4Privacy)
48
 
49
+ This model is designed to **redact and classify Personally Identifiable Information (PII)** from multilingual text. It has been fine-tuned on the [open-pii-masking-500k-ai4privacy](https://huggingface.co/datasets/ai4privacy/open-pii-masking-500k-ai4privacy) dataset and supports multiple languages, including French (fr), English (en), German (de), Telugu (te), Hindi (hi), Italian (it), Spanish (es), and Dutch (nl).
50
 
51
  ---
52
 
53
  ## Evaluation Metrics
54
 
55
+ The table below summarizes the detailed evaluation results per PII label. Metrics are presented as percentages rounded to two decimal places. For the "O" (Non-PII) label, precision, recall, and F1 score are not applicable (n/a) due to the absence of true positives.
56
 
57
  | **Label** | **TP** | **FP** | **FN** | **Accuracy** | **Precision** | **Recall** | **F1 Score** |
58
  |--------------------|:------:|:------:|:------|:------------:|:-------------:|:----------:|:------------:|
59
+ | O (Non-PII) | 0 | 734 | 0 | 98.97% | n/a | n/a | n/a |
60
+ | GIVENNAME | 6623 | 661 | 352 | 86.73% | 90.93% | 94.95% | 92.90% |
61
+ | SURNAME | 2786 | 877 | 162 | 72.84% | 76.06% | 94.50% | 84.28% |
62
+ | CITY | 1763 | 216 | 225 | 79.99% | 89.09% | 88.68% | 88.88% |
63
+ | DATE | 2195 | 1 | 3 | 99.82% | 99.95% | 99.86% | 99.91% |
64
+ | AGE | 176 | 7 | 2 | 95.14% | 96.17% | 98.88% | 97.51% |
65
+ | EMAIL | 2981 | 0 | 0 | 100.0% | 100.0% | 100.0% | 100.0% |
66
+ | CREDITCARDNUMBER | 601 | 57 | 35 | 86.72% | 91.34% | 94.50% | 92.89% |
67
+ | SEX | 103 | 45 | 1 | 69.13% | 69.59% | 99.04% | 81.75% |
68
+ | SOCIALNUM | 364 | 134 | 20 | 70.27% | 73.09% | 94.79% | 82.54% |
69
+ | TIME | 1631 | 1 | 3 | 99.76% | 99.94% | 99.82% | 99.88% |
70
+ | TELEPHONENUM | 3537 | 10 | 9 | 99.47% | 99.72% | 99.75% | 99.73% |
71
+ | IDCARDNUM | 1540 | 314 | 148 | 76.92% | 83.06% | 91.23% | 86.96% |
72
+ | ZIPCODE | 311 | 39 | 16 | 84.97% | 88.86% | 95.11% | 91.87% |
73
+ | DRIVERLICENSENUM | 296 | 143 | 26 | 63.66% | 67.43% | 91.93% | 77.79% |
74
+ | PASSPORTNUM | 482 | 285 | 25 | 60.86% | 62.84% | 95.07% | 75.67% |
75
+ | TITLE | 224 | 68 | 78 | 60.54% | 76.71% | 74.17% | 75.42% |
76
+ | BUILDINGNUM | 292 | 45 | 14 | 83.19% | 86.65% | 95.42% | 90.85% |
77
+ | STREET | 1272 | 155 | 67 | 85.14% | 89.14% | 94.99% | 91.97% |
78
+ | TAXNUM | 471 | 101 | 34 | 77.72% | 82.34% | 93.27% | 87.47% |
79
+ | GENDER | 123 | 35 | 9 | 73.65% | 77.85% | 93.18% | 84.83% |
80
 
81
  ### Overall Evaluation
82
+ - **Accuracy:** 95.03%
83
+ - **Precision:** 87.61%
84
+ - **Recall:** 95.76%
85
+ - **F1 Score:** 91.50%
86
 
87
+ - **Total True Positives (TP):** 27,771
88
+ - **Total False Positives (FP):** 3,928
89
+ - **Total False Negatives (FN):** 1,229
90
 
91
  ### Macro-Averaged Metrics
92
+ - **Accuracy:** 82.17%
93
+ - **Precision:** 80.99%
94
+ - **Recall:** 89.96%
95
+ - **F1 Score:** 84.91%
96
 
97
  ---
98
 
99
  ## Model Behavior & Limitations
100
 
101
  - **Evaluation Focus:**
102
+ The metrics above reflect performance on the test split of the [open-pii-masking-500k-ai4privacy](https://huggingface.co/datasets/ai4privacy/open-pii-masking-500k-ai4privacy) dataset. This model both redacts and classifies PII into specific categories (e.g., GIVENNAME, EMAIL). Real-world performance may vary depending on text domain and language, so additional validation is recommended. For support, contact **[email protected]**.
103
 
104
  - **Strengths:**
105
+ - High recall (95.76%) ensures most PII is detected.
106
+ - Exceptional performance on labels like "EMAIL" (100% F1), "DATE" (99.91% F1), and "TIME" (99.88% F1).
107
 
108
  - **Limitations:**
109
+ - Lower precision for labels such as "PASSPORTNUM" (62.84%) and "DRIVERLICENSENUM" (67.43%), indicating a higher rate of false positives.
110
+ - The "O" (Non-PII) label has no true positives, making precision, recall, and F1 score not applicable (n/a).
111
 
112
  ---
113
 
 
120
 
121
  ---
122
 
123
+ *Ai4Privacy – Committed to protecting personal data in the age of AI.*
124
+
125
+ ---