tahirjm's picture
Upload folder using huggingface_hub
5aece43 verified
from transformers import PretrainedConfig, PreTrainedModel, AutoModel, AutoConfig
import torch
import os
import numpy as np
import json
import onnxruntime as ort
from huggingface_hub import snapshot_download
class IndicASRConfig(PretrainedConfig):
model_type = "iasr"
def __init__(self, ts_folder: str = "path", BLANK_ID: int = 256, RNNT_MAX_SYMBOLS: int = 10,
PRED_RNN_LAYERS: int = 2, PRED_RNN_HIDDEN_DIM: int = 640, SOS: int = 256, **kwargs):
super().__init__(**kwargs)
self.ts_folder = ts_folder
self.BLANK_ID = BLANK_ID
self.RNNT_MAX_SYMBOLS = RNNT_MAX_SYMBOLS
self.PRED_RNN_LAYERS = PRED_RNN_LAYERS
self.PRED_RNN_HIDDEN_DIM = PRED_RNN_HIDDEN_DIM
self.SOS = SOS
class IndicASRModel(PreTrainedModel):
config_class = IndicASRConfig
def __init__(self, config):
super().__init__(config)
# Load model components
self.models = {}
names = ['encoder', 'ctc_decoder', 'rnnt_decoder', 'joint_enc', 'joint_pred', 'joint_pre_net'] + [f'joint_post_net_{z}' for z in ['as', 'bn', 'brx', 'doi', 'gu', 'hi', 'kn', 'kok', 'ks', 'mai', 'ml', 'mni', 'mr', 'ne', 'or', 'pa', 'sa', 'sat', 'sd', 'ta', 'te', 'ur']]
self.models = {}
self.d = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.models['preprocessor'] = torch.jit.load(f'{config.ts_folder}/assets/preprocessor.ts', map_location=self.d)
for n in names:
component_name = f'{config.ts_folder}/assets/{n}.onnx'
if os.path.exists(config.ts_folder):
self.models[n] = ort.InferenceSession(component_name, providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if torch.cuda.is_available() else ['CPUExecutionProvider'])
else:
self.models[n] = None
print('Failed to load', component_name)
# Load vocab and language masks
with open(f'{config.ts_folder}/assets/vocab.json') as reader:
self.vocab = json.load(reader)
with open(f'{config.ts_folder}/assets/language_masks.json') as reader:
self.language_masks = json.load(reader)
def forward(self, wav, lang, decoding='ctc'):
encoder_outputs, encoded_lengths = self.encode(wav)
if decoding == 'ctc':
return self._ctc_decode(encoder_outputs, encoded_lengths, lang)
if decoding == 'rnnt':
return self._rnnt_decode(encoder_outputs, encoded_lengths, lang)
def encode(self, wav):
# pass through preprocessor
audio_signal, length = self.models['preprocessor'](input_signal=wav.to(self.d), length=torch.tensor([wav.shape[-1]]).to(self.d))
outputs, encoded_lengths = self.models['encoder'].run(['outputs', 'encoded_lengths'], {'audio_signal': audio_signal.cpu().numpy(), 'length': length.cpu().numpy()})
return outputs, encoded_lengths
def _ctc_decode(self, encoder_outputs, encoded_lengths, lang):
logprobs = self.models['ctc_decoder'].run(['logprobs'], {'encoder_output': encoder_outputs})[0]
logprobs = torch.from_numpy(logprobs[:, :, self.language_masks[lang]]).log_softmax(dim=-1)
# currently no batching
indices = torch.argmax(logprobs[0],dim=-1)
collapsed_indices = torch.unique_consecutive(indices, dim=-1)
hyp = ''.join([self.vocab[lang][x] for x in collapsed_indices if x != self.config.BLANK_ID]).replace('▁',' ').strip()
del logprobs, indices, collapsed_indices
return hyp
def _rnnt_decode(self, encoder_outputs, encoded_lengths, lang):
joint_enc = self.models['joint_enc'].run(['output'], {'input': encoder_outputs.transpose(0, 2, 1)})[0]
joint_enc = torch.from_numpy(joint_enc)
# Initialize hypothesis with SOS token
hyp = [self.config.SOS]
prev_dec_state = (np.zeros((self.config.PRED_RNN_LAYERS, 1, self.config.PRED_RNN_HIDDEN_DIM), dtype=np.float32),
np.zeros((self.config.PRED_RNN_LAYERS, 1, self.config.PRED_RNN_HIDDEN_DIM), dtype=np.float32))
# Iterate over time steps (T)
for t in range(joint_enc.size(1)):
f = joint_enc[:, t, :].unsqueeze(1) # B x 1 x H
not_blank = True
symbols_added = 0
while not_blank and ((self.config.RNNT_MAX_SYMBOLS is None) or (symbols_added < self.config.RNNT_MAX_SYMBOLS)):
# Decoder forward passsaa
g, _, dec_state_0, dec_state_1 = self.models['rnnt_decoder'].run(
['outputs', 'prednet_lengths', 'states', '162'],
{'targets': np.array([[hyp[-1]]], dtype=np.int32),
'target_length': np.array([1], dtype=np.int32),
'states.1': prev_dec_state[0],
'onnx::Slice_3': prev_dec_state[1]})
# Joint network
g = self.models['joint_pred'].run(['output'], {'input': g.transpose(0,2,1)})[0]
joint_out = f + g # B x 1 x H
joint_out = self.models['joint_pre_net'].run(['output'], {'input': joint_out.numpy()})[0]
logits = self.models[f'joint_post_net_{lang}'].run(['output'], {'input': joint_out})[0]
log_probs = torch.from_numpy(logits).log_softmax(dim=-1)
pred_token = log_probs.argmax(dim=-1).item()
# Append if not blank
if pred_token == self.config.BLANK_ID:
not_blank = False
else:
hyp.append(pred_token)
prev_dec_state = (dec_state_0, dec_state_1)
symbols_added += 1
pred_text = ''.join([self.vocab[lang][x] for x in hyp if x != self.config.SOS]).replace('▁',' ').strip()
return pred_text
@classmethod
def from_pretrained(cls,
pretrained_model_name_or_path,
*,
force_download=False,
resume_download=None,
proxies=None,
token=None,
cache_dir=None,
local_files_only=False,
revision=None, **kwargs):
loc = snapshot_download(repo_id=pretrained_model_name_or_path, token=token)
return cls(IndicASRConfig(ts_folder=loc, **kwargs))
if __name__ == '__main__':
from transformers import AutoConfig, AutoModel
# Register the model so it can be used with AutoModel
AutoConfig.register("iasr", IndicASRConfig)
AutoModel.register(IndicASRConfig, IndicASRModel)