sumanthd commited on
Commit
b394017
ยท
verified ยท
1 Parent(s): 3f64837

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +50 -41
README.md CHANGED
@@ -1,42 +1,51 @@
1
- ---
2
- license: cc-by-4.0
3
- ---
4
-
5
- # IndicTrans3
6
-
7
- **IndicTrans3** is a multilingual translation model for 15 Indic languages. This repository provides an inference script that leverages [vLLM](https://github.com/vllm-project/vllm) for efficient and scalable translation.
8
-
9
- The model is built on top of **Gemma-3** and fine-tuned for **document-level translation** tasks. It supports both **sentence-level** and **document-level** translation in **both directions**:
10
- - English โ†” Indic Languages
11
- - Indic Languages โ†” English
12
-
13
- ---
14
-
15
- ## ๐ŸŒ Supported Languages
16
- The model supports the following Indic languages: Assamese, Bengali, Gujarati, Hindi, Kannada, Maithili, Malayalam, Marathi, Nepali, Odia, Punjabi, Sanskrit, Tamil, Telugu, Urdu.
17
-
18
- ## ๐Ÿ› ๏ธ Installation
19
-
20
- 1. **Install PyTorch**
21
- Follow the instructions based on your system and CUDA version from the official [PyTorch website](https://pytorch.org/get-started/locally/).
22
-
23
- 2. **Install required dependencies**
24
-
25
- ```bash
26
- pip install vllm transformers
27
- ```
28
-
29
- 3. Run Inference with vllm
30
- ```bash
31
- python vllm-inference.py \
32
- --model <model_path> \
33
- --input_file <input_file> \
34
- --output_path <output_file> \
35
- --src_lang <source_language> \
36
- --tgt_lang <target_language> \
37
- --input_column <input_column> \
38
- --input_type <input_type> \
39
- ```
40
-
41
- ## License
 
 
 
 
 
 
 
 
 
42
  This model is licensed under the [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/) license. You are free to share and adapt the material for any purpose, even commercially, as long as you provide appropriate credit, indicate if changes were made, and distribute your contributions under the same license.
 
1
+ ---
2
+ license: cc-by-4.0
3
+ ---
4
+
5
+ # IndicTrans3
6
+
7
+ **IndicTrans3** is a multilingual translation model for 15 Indic languages. This repository provides an inference script that leverages [vLLM](https://github.com/vllm-project/vllm) for efficient and scalable translation.
8
+
9
+ The model is built on top of **Gemma-3** and fine-tuned for **document-level translation** tasks. It supports both **sentence-level** and **document-level** translation in **both directions**:
10
+ - English โ†” Indic Languages
11
+ - Indic Languages โ†” English
12
+
13
+ ---
14
+
15
+ ## ๐ŸŒ Supported Languages
16
+
17
+ **IndicTrans3** supports translation across a wide range of Indic languages. The primary set includes:
18
+
19
+ > **Assamese, Bengali, Gujarati, Hindi, Kannada, Maithili, Malayalam, Marathi, Nepali, Odia, Punjabi, Sanskrit, Tamil, Telugu, Urdu**
20
+
21
+ In addition to these, **IndicTrans3** extends preliminary support to the following 7 low-resource languages:
22
+
23
+ > **Bodo, Dogri, Kashmiri, Konkani, Manipuri, Santali, Sindhi**
24
+
25
+ โš ๏ธ *Note*: While these low-resource languages are supported, their translation quality may vary due to limited training data. We are actively working on improving support for these languages, and enhancements will be included in future releases.
26
+
27
+ ## ๐Ÿ› ๏ธ Installation
28
+
29
+ 1. **Install PyTorch**
30
+ Follow the instructions based on your system and CUDA version from the official [PyTorch website](https://pytorch.org/get-started/locally/).
31
+
32
+ 2. **Install required dependencies**
33
+
34
+ ```bash
35
+ pip install vllm transformers
36
+ ```
37
+
38
+ 3. Run Inference with vllm
39
+ ```bash
40
+ python vllm-inference.py \
41
+ --model <model_path> \
42
+ --input_file <input_file> \
43
+ --output_path <output_file> \
44
+ --src_lang <source_language> \
45
+ --tgt_lang <target_language> \
46
+ --input_column <input_column> \
47
+ --input_type <input_type> \
48
+ ```
49
+
50
+ ## License
51
  This model is licensed under the [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/) license. You are free to share and adapt the material for any purpose, even commercially, as long as you provide appropriate credit, indicate if changes were made, and distribute your contributions under the same license.