Update README.md
Browse files
README.md
CHANGED
|
@@ -13,6 +13,71 @@ metrics:
|
|
| 13 |
pipeline_tag: text-classification
|
| 14 |
---
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
# Model Card for Model ID
|
| 17 |
|
| 18 |
**Please see paper & code for more information:**
|
|
|
|
| 13 |
pipeline_tag: text-classification
|
| 14 |
---
|
| 15 |
|
| 16 |
+
# How to use
|
| 17 |
+
|
| 18 |
+
In this example, we do an inference on a sample from our dataset (_ResumeAtlas_). You can increase `max_length` for more accurate predictions.
|
| 19 |
+
|
| 20 |
+
```python
|
| 21 |
+
!pip install datasets
|
| 22 |
+
|
| 23 |
+
import numpy as np
|
| 24 |
+
import torch
|
| 25 |
+
from transformers import BertForSequenceClassification, BertTokenizer
|
| 26 |
+
from datasets import load_dataset
|
| 27 |
+
from sklearn import preprocessing
|
| 28 |
+
|
| 29 |
+
dataset_id='ahmedheakl/resume-atlas'
|
| 30 |
+
model_id='ahmedheakl/bert-resume-classification'
|
| 31 |
+
label_column = "Category"
|
| 32 |
+
num_labels=43
|
| 33 |
+
output_attentions=False
|
| 34 |
+
output_hidden_states=False
|
| 35 |
+
do_lower_case=True
|
| 36 |
+
add_special_tokens=True
|
| 37 |
+
max_length=512
|
| 38 |
+
pad_to_max_length=True
|
| 39 |
+
return_attention_mask=True
|
| 40 |
+
truncation=True
|
| 41 |
+
|
| 42 |
+
ds = load_dataset(dataset_id, trust_remote_code=True)
|
| 43 |
+
|
| 44 |
+
le = preprocessing.LabelEncoder()
|
| 45 |
+
le.fit(ds['train'][label_column])
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
tokenizer = BertTokenizer.from_pretrained(model_id, do_lower_case=do_lower_case)
|
| 49 |
+
model = BertForSequenceClassification.from_pretrained(
|
| 50 |
+
model_id,
|
| 51 |
+
num_labels = num_labels,
|
| 52 |
+
output_attentions = output_attentions,
|
| 53 |
+
output_hidden_states = output_hidden_states,
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
model = model.to('cuda').eval()
|
| 57 |
+
sent = ds['train'][0]['Text']
|
| 58 |
+
|
| 59 |
+
encoded_dict = tokenizer.encode_plus(
|
| 60 |
+
sent,
|
| 61 |
+
add_special_tokens=add_special_tokens,
|
| 62 |
+
max_length=max_length,
|
| 63 |
+
pad_to_max_length=pad_to_max_length,
|
| 64 |
+
return_attention_mask=return_attention_mask,
|
| 65 |
+
return_tensors='pt',
|
| 66 |
+
truncation=truncation,
|
| 67 |
+
)
|
| 68 |
+
input_ids = encoded_dict['input_ids'].to('cuda')
|
| 69 |
+
attention_mask = encoded_dict['attention_mask'].to('cuda')
|
| 70 |
+
|
| 71 |
+
outputs = model(
|
| 72 |
+
input_ids,
|
| 73 |
+
token_type_ids=None,
|
| 74 |
+
attention_mask=attention_mask
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
label_id = np.argmax(outputs['logits'].cpu().detach().tolist(), axis=1)
|
| 78 |
+
print(f'Predicted: {le.inverse_transform(label_id)[0]} | Ground: {ds["train"][0][label_column]}')
|
| 79 |
+
```
|
| 80 |
+
|
| 81 |
# Model Card for Model ID
|
| 82 |
|
| 83 |
**Please see paper & code for more information:**
|