Update README.md
Browse files
README.md
CHANGED
@@ -6,34 +6,64 @@ tags:
|
|
6 |
- generated_from_trainer
|
7 |
metrics:
|
8 |
- accuracy
|
9 |
-
|
10 |
-
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
---
|
13 |
|
14 |
-
|
15 |
-
should probably proofread and complete it, then remove this comment. -->
|
16 |
|
17 |
-
|
|
|
18 |
|
19 |
-
This model is a fine-tuned version of [agentlans/multilingual-e5-small-aligned-v2](https://huggingface.co/agentlans/multilingual-e5-small-aligned-v2)
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
- Loss: 0.1983
|
22 |
- Accuracy: 0.9515
|
23 |
- Combined Score: 1.3494
|
24 |
- Num Input Tokens Seen: 122880000
|
25 |
|
26 |
-
## Model description
|
27 |
-
|
28 |
-
More information needed
|
29 |
|
30 |
-
##
|
31 |
|
32 |
-
|
|
|
33 |
|
34 |
-
|
|
|
|
|
35 |
|
36 |
-
|
|
|
|
|
|
|
37 |
|
38 |
## Training procedure
|
39 |
|
@@ -62,4 +92,4 @@ The following hyperparameters were used during training:
|
|
62 |
- Transformers 4.51.3
|
63 |
- Pytorch 2.6.0+cu124
|
64 |
- Datasets 3.2.0
|
65 |
-
- Tokenizers 0.21.0
|
|
|
6 |
- generated_from_trainer
|
7 |
metrics:
|
8 |
- accuracy
|
9 |
+
language:
|
10 |
+
- ar
|
11 |
+
- zh
|
12 |
+
- cs
|
13 |
+
- da
|
14 |
+
- nl
|
15 |
+
- fr
|
16 |
+
- de
|
17 |
+
- el
|
18 |
+
- hu
|
19 |
+
- id
|
20 |
+
- it
|
21 |
+
- ja
|
22 |
+
- fa
|
23 |
+
- pl
|
24 |
+
- pt
|
25 |
+
- ru
|
26 |
+
- es
|
27 |
+
- sv
|
28 |
+
- tr
|
29 |
+
- vi
|
30 |
+
datasets:
|
31 |
+
- agentlans/fineweb2hq-vs-c4
|
32 |
+
pipeline_tag: text-classification
|
33 |
---
|
34 |
|
35 |
+
# agentlans/multilingual-e5-small-fineweb2hq-vs-c4-classifier
|
|
|
36 |
|
37 |
+
> [!IMPORTANT]
|
38 |
+
> **Note:** This model is provided for reference and reproducibility, not for standalone use.
|
39 |
|
40 |
+
This model is a fine-tuned version of [agentlans/multilingual-e5-small-aligned-v2](https://huggingface.co/agentlans/multilingual-e5-small-aligned-v2)
|
41 |
+
on the [agentlans/fineweb2hq-vs-c4](https://huggingface.co/datasets/agentlans/fineweb2hq-vs-c4) dataset.
|
42 |
+
|
43 |
+
The aim is to classify text as higher quality (FineWeb 2 HQ) or lower quality (C4) for AI training.
|
44 |
+
|
45 |
+
Training dataset:
|
46 |
+
|
47 |
+
On the validation set:
|
48 |
- Loss: 0.1983
|
49 |
- Accuracy: 0.9515
|
50 |
- Combined Score: 1.3494
|
51 |
- Num Input Tokens Seen: 122880000
|
52 |
|
|
|
|
|
|
|
53 |
|
54 |
+
## Example
|
55 |
|
56 |
+
```python
|
57 |
+
from transformers import pipeline
|
58 |
|
59 |
+
classifier = pipeline("text-classification", model="agentlans/multilingual-e5-small-fineweb2hq-vs-c4-classifier")
|
60 |
+
classifier("Your text here.")
|
61 |
+
```
|
62 |
|
63 |
+
## Limitations
|
64 |
+
- **Not trained on English data**
|
65 |
+
- Tends to be overly permissive, labelling most texts outside training data as high quality
|
66 |
+
- May be biased against some text types
|
67 |
|
68 |
## Training procedure
|
69 |
|
|
|
92 |
- Transformers 4.51.3
|
93 |
- Pytorch 2.6.0+cu124
|
94 |
- Datasets 3.2.0
|
95 |
+
- Tokenizers 0.21.0
|