--- library_name: transformers license: mit base_model: agentlans/deberta-v3-base-zyda-2-v2 tags: - generated_from_trainer model-index: - name: deberta-v3-base-zyda-2-v2-text-quality-v3 results: [] datasets: - agentlans/text-quality-v3 language: - en --- # DeBERTa Text Quality Model This model rates the **quality of English text** for AI learning. Input a text string, and it outputs a numeric quality score reflecting overall informativeness and usefulness. ## Performance On the evaluation set, it achieved: - Loss: 0.1408 - MSE: 0.1408 - Combined Score: 0.1408 - Tokens processed during training: 102,398,720 ## Usage Example ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch model_name = "agentlans/deberta-v3-base-quality-v3" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name).to("cuda" if torch.cuda.is_available() else "cpu") # Higher scores indicate higher text quality. # The sign of the score has no particular meaning. # For example, a negative score doesn't necessarily mean that the text is low quality. def quality(text): inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(model.device) with torch.no_grad(): score = model(**inputs).logits.squeeze().cpu().item() return score print(quality("Your text here.")) ``` ## Limitations - Works best on non-fiction and general-purpose texts. - Scores give an overall quality estimate but don’t explain why. - The model is large and slow; for faster results with similar accuracy, try [agentlans/GIST-all-MiniLM-L6-v2-quality-v3](https://huggingface.co/agentlans/GIST-all-MiniLM-L6-v2-quality-v3). - Check for biases and suitability before use. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mse | Combined Score | Input Tokens Seen | |:-------------:|:-----:|:------:|:---------------:|:------:|:--------------:|:-----------------:| | 0.1635 | 1.0 | 10000 | 0.1854 | 0.1854 | 0.1854 | 10239872 | | 0.1241 | 2.0 | 20000 | 0.1408 | 0.1408 | 0.1408 | 20479744 | | 0.0882 | 3.0 | 30000 | 0.1747 | 0.1747 | 0.1747 | 30719616 | | 0.054 | 4.0 | 40000 | 0.1528 | 0.1528 | 0.1528 | 40959488 | | 0.0372 | 5.0 | 50000 | 0.1480 | 0.1480 | 0.1480 | 51199360 | | 0.0263 | 6.0 | 60000 | 0.1524 | 0.1524 | 0.1524 | 61439232 | | 0.0203 | 7.0 | 70000 | 0.1495 | 0.1495 | 0.1495 | 71679104 | | 0.0135 | 8.0 | 80000 | 0.1482 | 0.1482 | 0.1482 | 81918976 | | 0.0098 | 9.0 | 90000 | 0.1450 | 0.1450 | 0.1450 | 92158848 | | 0.0073 | 10.0 | 100000 | 0.1453 | 0.1453 | 0.1453 | 102398720 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0