agentlans commited on
Commit
52d5ab5
·
verified ·
1 Parent(s): d7d9c43

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +36 -12
README.md CHANGED
@@ -10,27 +10,51 @@ model-index:
10
  datasets:
11
  - agentlans/text-quality-v3
12
  ---
 
13
 
14
  # deberta-v3-base-zyda-2-v2-text-quality-v3
15
 
16
- This model is a fine-tuned version of [agentlans/deberta-v3-base-zyda-2-v2](https://huggingface.co/agentlans/deberta-v3-base-zyda-2-v2) on an unknown dataset.
17
- It achieves the following results on the evaluation set:
18
- - Loss: 0.1408
19
- - Mse: 0.1408
20
- - Combined Score: 0.1408
21
- - Num Input Tokens Seen: 102398720
22
 
23
- ## Model description
24
 
25
- More information needed
26
 
27
- ## Intended uses & limitations
28
 
29
- More information needed
 
 
 
 
30
 
31
- ## Training and evaluation data
32
 
33
- More information needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
 
35
  ## Training procedure
36
 
 
10
  datasets:
11
  - agentlans/text-quality-v3
12
  ---
13
+ Sure! Here’s a more concise and natural revision of your model card:
14
 
15
  # deberta-v3-base-zyda-2-v2-text-quality-v3
16
 
17
+ ## Overview
 
 
 
 
 
18
 
19
+ This model rates the **quality of English text** for AI learning. Input a text string, and it outputs a numeric quality score reflecting overall readability, informativeness, and usefulness.
20
 
21
+ It’s fine-tuned from [agentlans/deberta-v3-base-zyda-2-v2](https://huggingface.co/agentlans/deberta-v3-base-zyda-2-v2) using the same dataset.
22
 
23
+ ## Performance
24
 
25
+ On the evaluation set, it achieved:
26
+ - Loss: 0.1408
27
+ - MSE: 0.1408
28
+ - Combined Score: 0.1408
29
+ - Tokens processed during training: 102,398,720
30
 
31
+ ## Usage Example
32
 
33
+ ```python
34
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
35
+ import torch
36
+
37
+ model_name = "agentlans/deberta-v3-base-quality-v3"
38
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
39
+ model = AutoModelForSequenceClassification.from_pretrained(model_name).to("cuda" if torch.cuda.is_available() else "cpu")
40
+
41
+ # Higher scores indicate higher text quality.
42
+ # The sign of the score has no particular meaning. For example, score < 0 doesn't mean that the text is low quality.
43
+ def quality(text):
44
+ inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(model.device)
45
+ with torch.no_grad():
46
+ score = model(**inputs).logits.squeeze().cpu().item()
47
+ return score
48
+
49
+ print(quality("Your text here."))
50
+ ```
51
+
52
+ ## Limitations
53
+
54
+ - Works best on non-fiction and general-purpose texts.
55
+ - Scores give an overall quality estimate but don’t explain why.
56
+ - The model is large and slow; for faster results with similar accuracy, try `MyOtherModel`.
57
+ - Check for biases and suitability before use.
58
 
59
  ## Training procedure
60