--- language: - en tags: - markdown - information - index --- # Model Catalogue [This repository](https://huggingface.co/agentlans) contains a collection of boutique AI models and is organized as follows: ## Pretrained Base Models for Text Embedding ### English Models These models were finetuned on a subset of [Zyphra/Zyda-2](https://huggingface.co/datasets/Zyphra/Zyda-2): - [snowflake-arctic-embed-xs-zyda-2](https://huggingface.co/agentlans/snowflake-arctic-embed-xs-zyda-2) - [deberta-v3-xsmall-zyda-2](https://huggingface.co/agentlans/deberta-v3-xsmall-zyda-2) - [deberta-v3-base-zyda-2](https://huggingface.co/agentlans/deberta-v3-base-zyda-2) ### Multilingual Models These models were aligned using [agentlans/en-translations](https://huggingface.co/datasets/agentlans/en-translations): - [multilingual-e5-small-aligned](https://huggingface.co/agentlans/multilingual-e5-small-aligned) - [distilbert-base-multilingual-cased-aligned](https://huggingface.co/agentlans/distilbert-base-multilingual-cased-aligned) ## Text Statistics Models These models take text as input and output a number. | Base Model | Language | Quality | Readability | Sentiment | |------------|----------|---------|-------------|-----------| | deberta-v3-xsmall-zyda-2 | English | [Link](https://huggingface.co/agentlans/deberta-v3-xsmall-zyda-2-quality) | [Link](https://huggingface.co/agentlans/deberta-v3-xsmall-zyda-2-readability) | [Link](https://huggingface.co/agentlans/deberta-v3-xsmall-zyda-2-sentiment) | | deberta-v3-base-zyda-2 | English | [Link](https://huggingface.co/agentlans/deberta-v3-base-zyda-2-quality) | [Link](https://huggingface.co/agentlans/deberta-v3-base-zyda-2-readability) | [Link](https://huggingface.co/agentlans/deberta-v3-base-zyda-2-sentiment) | | multilingual-e5-small-aligned | Multilingual | [Link](https://huggingface.co/agentlans/multilingual-e5-small-aligned-quality) | [Link](https://huggingface.co/agentlans/multilingual-e5-small-aligned-readability) | [Link](https://huggingface.co/agentlans/multilingual-e5-small-aligned-sentiment) | | mdeberta-v3-base | Multilingual | [Link](https://huggingface.co/agentlans/mdeberta-v3-base-quality) | [Link](https://huggingface.co/agentlans/mdeberta-v3-base-readability) | [Link](https://huggingface.co/agentlans/mdeberta-v3-base-sentiment) | **Note:** The `mdeberta-v3-base` models were trained on a previous version of the dataset, not the complete dataset. ## Small Text-to-Text Models (English Only) These models take text as input and produce text as output. | Task | Model | Dataset | |------|-------|---------| | Keyword extraction | [flan-t5-small-keywords](https://huggingface.co/agentlans/flan-t5-small-keywords) | [wikipedia-paragraph-keywords](https://huggingface.co/datasets/agentlans/wikipedia-paragraph-keywords) | | Title generation | [flan-t5-small-title](https://huggingface.co/agentlans/flan-t5-small-title) | [wikipedia-paragraph-titles](https://huggingface.co/datasets/agentlans/wikipedia-paragraph-titles) | | Summarization | [text-summarization](https://huggingface.co/agentlans/text-summarization) | [wikipedia-paragraph-summaries](https://huggingface.co/datasets/agentlans/wikipedia-paragraph-summaries) | ## Natural Language Inference (NLI) Models (English Only) These models take text as input and output a label (entailment, neutral, or contradiction). - [all-MiniLM-L6-v2-nli](https://huggingface.co/agentlans/all-MiniLM-L6-v2-nli) - [bge-small-en-v1.5-nli](https://huggingface.co/agentlans/bge-small-en-v1.5-nli) - [e5-small-v2-nli](https://huggingface.co/agentlans/e5-small-v2-nli) - [mobilebert-uncased-nli](https://huggingface.co/agentlans/mobilebert-uncased-nli) - [NoInstruct-small-Embedding-v0-nli](https://huggingface.co/agentlans/NoInstruct-small-Embedding-v0-nli) - [snowflake-arctic-embed-s-nli](https://huggingface.co/agentlans/snowflake-arctic-embed-s-nli) - [snowflake-arctic-embed-xs-nli](https://huggingface.co/agentlans/snowflake-arctic-embed-xs-nli) - [TinyBERT_General_4L_312D-nli](https://huggingface.co/agentlans/TinyBERT_General_4L_312D-nli)