{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x781d16c9e040>"}, "verbose": 0, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1747519188853631805, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVlgAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAADAgzK+R5prP4bTEr6V3K2+XBtnvnF6gzwAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsIhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdQAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksBhZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG7yNkOI68yMAWyUTaYBjAF0lEdAnfLqD5CWvHV9lChoBkdAcILFxn3+M2gHTaQBaAhHQJ31hd+ocaR1fZQoaAZHQHCgQ+hXbM5oB03lAWgIR0Cd+H9xZMcqdX2UKGgGR0BwDvoHLRrraAdNkwFoCEdAnfxYis4kvHV9lChoBkdAbWLZ6D5CW2gHTXoBaAhHQJ3+m79Q40d1fZQoaAZHQHCMv9Hc1wZoB01oAWgIR0CeAid9Ujs2dX2UKGgGR0Bvxx48lolEaAdN9AFoCEdAngU2MbWEsnV9lChoBkdAa9JO9nK4hGgHTdQBaAhHQJ4IGn3ta6l1fZQoaAZHQG98q6FuejFoB01AAmgIR0CeDOklNUOvdX2UKGgGR0Bsa6DAaef7aAdNwwFoCEdAng+a0QbuMXV9lChoBkdAcZwB+F10T2gHTd4BaAhHQJ4T2ZZ0Syt1fZQoaAZHQGALDSgGr0doB03oA2gIR0CeHOg+QlrudX2UKGgGR0BrCcFKTSssaAdNVQJoCEdAniGKTr3TNXV9lChoBkdAcZY3Sro4dmgHTRsCaAhHQJ4mMK7ZnL91fZQoaAZHQG7YswL3K0VoB01FAmgIR0CeKwzfaYeDdX2UKGgGR0BweLUb1h9caAdNYQFoCEdAni0sJdB0IXV9lChoBkdAbe3z8P4EfWgHTdgBaAhHQJ4wAVGkN4J1fZQoaAZHQG7T57gKneloB01jAmgIR0CeNRXXiBGydX2UKGgGR0Bq40yLyc0+aAdNkQFoCEdAnjeO1F6RhnV9lChoBkdAbmbvfj0cwWgHTdsBaAhHQJ471kz41xd1fZQoaAZHQGsCOGj9GZxoB02QAWgIR0CePkz2vjffdX2UKGgGR0Bw9BfE4vOAaAdNbANoCEdAnkT1nh86WHV9lChoBkdAbbdk5IYm9mgHTd4CaAhHQJ5L3T4L1Ep1fZQoaAZHQG7CCQLeANJoB02EAmgIR0CeUUZPVNHpdX2UKGgGR0BdWPReC04SaAdN6ANoCEdAnljRqCYkV3V9lChoBkdAbo/GR3eN1mgHTZEBaAhHQJ5cwwvg3tN1fZQoaAZHQG9fO+AVfu1oB03fA2gIR0CeZDZUT+NtdX2UKGgGR0BxVipJf6XTaAdN6AFoCEdAnmcvXkHUt3V9lChoBkdAbnyEWZZ0S2gHTZgCaAhHQJ5smcAiml91fZQoaAZHQG/VUzKs+3ZoB02wAWgIR0Ceby1G9YfXdX2UKGgGR0BtTS9CeEqUaAdNdAFoCEdAnnLMlkYoAnV9lChoBkdAbckuuA7Pp2gHTeQBaAhHQJ51wTPBzmx1fZQoaAZHQG6wqtYB/7VoB02fAWgIR0CeefsGxD9gdX2UKGgGR0BwnIC0WuYAaAdNqgJoCEdAnn+Ve0G/vnV9lChoBkdAcP0Ippeu3mgHTY4BaAhHQJ6D7NUwSJ11fZQoaAZHQGtuPMr3CbdoB03jAWgIR0CehuPhhpg1dX2UKGgGR0BvPGixmkFfaAdNuwFoCEdAnorcsH0K7nV9lChoBkdAb8fJzT4L1GgHTX8BaAhHQJ6NOzw+dLB1fZQoaAZHQHCB9l2/zrhoB01hAWgIR0Cej1WXTmW/dX2UKGgGR0BvktqFh5PeaAdN0AFoCEdAnpN2eHzpYHV9lChoBkdAa28qkM1CPmgHTZ0BaAhHQJ6WCLXL/0d1fZQoaAZHQHEbbY02tMhoB03lAWgIR0CemmeizsyBdX2UKGgGR0BthTx9XtBwaAdNhwFoCEdAnpzQ9vCMxXV9lChoBkdAcbEof0VafWgHTZMBaAhHQJ6fUFwDNhV1fZQoaAZHQHAbp3C9AX5oB01WAWgIR0CeosJUo8ZDdX2UKGgGR0BxeMF0PpY+aAdNhAFoCEdAnqUToMa0hXV9lChoBkdAcKweRgZ0jmgHTccBaAhHQJ6pQQvpQk51fZQoaAZHQGu8MEA5q/NoB03EAWgIR0CerQUjs2NvdX2UKGgGR0BueHR9gF5faAdNmQFoCEdAnrBkPDpC8nV9lChoBkdAbtOEbHZK4GgHTV0BaAhHQJ60eLAHmih1fZQoaAZHQG4ov5gw485oB03VA2gIR0Ceu+xZMcp9dX2UKGgGR0BwhV63RXwLaAdNYgFoCEdAnr4Pe54GEHV9lChoBkdAcS9AVfu1GGgHTW0BaAhHQJ7AU/KQq7R1fZQoaAZHQHBYQF5fMOhoB01iAWgIR0Cew80BOpKjdX2UKGgGR0BvMrIYFaB7aAdNcAFoCEdAnsYS4FzMinV9lChoBkdAbvYA08/2TWgHTU4BaAhHQJ7IJYigTRJ1fZQoaAZHQHAGrtzCDVZoB004AWgIR0Cey0/M4cWCdX2UKGgGR0BxnrNorWiDaAdNigFoCEdAns3VBUrCnHV9lChoBkdAcDCAZbY9PmgHTWoBaAhHQJ7QFKlHjId1fZQoaAZHQHAIxrJr+HdoB01kAWgIR0Ce06IpH7P6dX2UKGgGR0BAhlA/s3Q2aAdNCwFoCEdAntVGFajesXV9lChoBkdAcmRYlpoK2WgHTY4BaAhHQJ7XmmZVn291fZQoaAZHQGtT672+PBBoB01+AWgIR0Ce28mh/RVqdX2UKGgGR0BvSX9pAUtaaAdNcAFoCEdAnt6/uLJjlXV9lChoBkdAXAKY5T6zmmgHTegDaAhHQJ7nj1vl2eR1fZQoaAZHQHGz/a+N96VoB02CAWgIR0Ce60YhdMTOdX2UKGgGR0BxCfl/6O5saAdNNwFoCEdAnu0t69kBjnV9lChoBkdAbT7k8zQ/o2gHTWgBaAhHQJ7vW57PY4B1fZQoaAZHQHIH1J6IFeRoB01ZAWgIR0Ce8YgezUqhdX2UKGgGR0BuD7mCAc1gaAdNawFoCEdAnvUGOU+s5nV9lChoBkdAcWIBi1Aqu2gHTW0BaAhHQJ73RhsqJ/J1fZQoaAZHQHBoUqc3EQ5oB02CAWgIR0Ce+v/gzguRdX2UKGgGR0Bt1Y2OyVv/aAdNWwFoCEdAnv0Yd6sySHV9lChoBkdAcEb95Qgs9WgHTb4BaAhHQJ7/1FEy+Ht1fZQoaAZHQHD/XMt9QXRoB01wAWgIR0CfA1dKujh2dX2UKGgGR0BvN37+DOC5aAdNXQFoCEdAnwVsLronr3V9lChoBkdAcCQhxYJVsGgHTTYBaAhHQJ8HUllbu+h1fZQoaAZHQHE0SJsO5J9oB00qAWgIR0CfCoO/L1VYdX2UKGgGR0BwWE/xDst1aAdN5QFoCEdAnw54bbUPQXV9lChoBkdAbxMYekpI+WgHTVABaAhHQJ8RIssg+yJ1fZQoaAZHQHAD90NjLB9oB01UAWgIR0CfFWNH6MzedX2UKGgGR0BvDKQiiZfEaAdNXQFoCEdAnxeI+r2g4HV9lChoBkdAbSWsqaw2VGgHTWYBaAhHQJ8ZvBguyu91fZQoaAZHQHDIYg3cYZVoB02XAWgIR0CfHYGbTc7AdX2UKGgGR0BtB8u6ErXlaAdNYQFoCEdAnx+r/Ot4iXV9lChoBkdAcL1eA/cFhWgHTYIBaAhHQJ8jXFm4Ajp1fZQoaAZHQGvC0VafSQZoB00+AWgIR0CfJVAHVwxWdX2UKGgGR0BxcugRK6FuaAdNZgFoCEdAnyeHQdCE6HV9lChoBkdAKs19Wp6yB2gHTToBaAhHQJ8qu+L3sX11fZQoaAZHQHDcUipvP1NoB03gAWgIR0CfLadadMCcdX2UKGgGR0BwReHdoFmnaAdNUAFoCEdAny+rYChexHV9lChoBkdAcL8VTJhfB2gHTW4BaAhHQJ8zMMspXp51fZQoaAZHQHHB921UlzFoB00lAWgIR0CfNQeruIAPdX2UKGgGR0BxMyLYPGyYaAdNkQFoCEdAnzdmT5ftyHV9lChoBkdAcLUkAggX/GgHTW4BaAhHQJ86/Em6XjV1fZQoaAZHQGylCOearm1oB01RAWgIR0CfPZJ8v24/dX2UKGgGR0BxI73L3bmEaAdNJgFoCEdAnz/kbPyCnXV9lChoBkdAcX9+L3sXzmgHTTkBaAhHQJ9EcA2hqTN1fZQoaAZHQHFVjPWxyGVoB02qAWgIR0CfRytPYWcjdX2UKGgGR0Bt0OX7cfvGaAdNawFoCEdAn0mB4Uvf0nVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "", ":serialized:": "gAWVdwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVqAIAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoDowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlGgbjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIwTbnVtcHkucmFuZG9tLl9wY2c2NJSMBVBDRzY0lJOUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaCiKEA8rElvwnYiaYTvR8tpHt3OMA2luY5SKEKviyEAHaQ8tnwzANs8C/j11jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpSKBe4GMZwAdYwabnVtcHkucmFuZG9tLmJpdF9nZW5lcmF0b3KUjBtfX3B5eF91bnBpY2tsZV9TZWVkU2VxdWVuY2WUk5RoLYwMU2VlZFNlcXVlbmNllJOUSiKi6gNOh5RSlCiKEDMqLTdH/pNxdA0aHeU/zjBLAIwTbnVtcHkuX2NvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAADrGHvgR21oIlLMxCIXzD8OUaAuMAnU0lImIh5RSlChLA2gPTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUSwQpdJRihpRihZRSlHViLg==", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.123+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Mar 30 16:01:29 UTC 2025", "Python": "3.11.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.6.0+cu124", "GPU Enabled": "True", "Numpy": "2.0.2", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}