End of training
Browse files
README.md
CHANGED
@@ -15,7 +15,7 @@ should probably proofread and complete it, then remove this comment. -->
|
|
15 |
|
16 |
This model is a fine-tuned version of [TheBloke/vigogne-2-70B-chat-GPTQ](https://huggingface.co/TheBloke/vigogne-2-70B-chat-GPTQ) on an unknown dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
-
- Loss: 0.
|
19 |
|
20 |
## Model description
|
21 |
|
@@ -34,40 +34,30 @@ More information needed
|
|
34 |
### Training hyperparameters
|
35 |
|
36 |
The following hyperparameters were used during training:
|
37 |
-
- learning_rate: 0.
|
38 |
- train_batch_size: 1
|
39 |
- eval_batch_size: 1
|
40 |
- seed: 42
|
41 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
42 |
- lr_scheduler_type: linear
|
43 |
- lr_scheduler_warmup_steps: 2
|
44 |
-
- training_steps:
|
45 |
- mixed_precision_training: Native AMP
|
46 |
|
47 |
### Training results
|
48 |
|
49 |
| Training Loss | Epoch | Step | Validation Loss |
|
50 |
|:-------------:|:-----:|:----:|:---------------:|
|
51 |
-
| No log | 0.
|
52 |
-
| No log | 0.
|
53 |
-
|
|
54 |
-
|
|
55 |
-
|
|
56 |
-
|
|
57 |
-
|
|
58 |
-
|
|
59 |
-
|
|
60 |
-
| 0.
|
61 |
-
| 0.9406 | 0.12 | 550 | 0.8070 |
|
62 |
-
| 0.9406 | 0.13 | 600 | 0.8089 |
|
63 |
-
| 0.9406 | 0.14 | 650 | 0.8018 |
|
64 |
-
| 0.9406 | 0.15 | 700 | 0.7947 |
|
65 |
-
| 0.9406 | 0.16 | 750 | 0.7910 |
|
66 |
-
| 0.9406 | 0.17 | 800 | 0.7828 |
|
67 |
-
| 0.9406 | 0.18 | 850 | 0.7774 |
|
68 |
-
| 0.9406 | 0.19 | 900 | 0.7747 |
|
69 |
-
| 0.9406 | 0.21 | 950 | 0.7712 |
|
70 |
-
| 0.7812 | 0.22 | 1000 | 0.7698 |
|
71 |
|
72 |
|
73 |
### Framework versions
|
|
|
15 |
|
16 |
This model is a fine-tuned version of [TheBloke/vigogne-2-70B-chat-GPTQ](https://huggingface.co/TheBloke/vigogne-2-70B-chat-GPTQ) on an unknown dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.8007
|
19 |
|
20 |
## Model description
|
21 |
|
|
|
34 |
### Training hyperparameters
|
35 |
|
36 |
The following hyperparameters were used during training:
|
37 |
+
- learning_rate: 0.0005
|
38 |
- train_batch_size: 1
|
39 |
- eval_batch_size: 1
|
40 |
- seed: 42
|
41 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
42 |
- lr_scheduler_type: linear
|
43 |
- lr_scheduler_warmup_steps: 2
|
44 |
+
- training_steps: 2000
|
45 |
- mixed_precision_training: Native AMP
|
46 |
|
47 |
### Training results
|
48 |
|
49 |
| Training Loss | Epoch | Step | Validation Loss |
|
50 |
|:-------------:|:-----:|:----:|:---------------:|
|
51 |
+
| No log | 0.04 | 200 | 0.9786 |
|
52 |
+
| No log | 0.09 | 400 | 0.9424 |
|
53 |
+
| 0.9766 | 0.13 | 600 | 0.9057 |
|
54 |
+
| 0.9766 | 0.18 | 800 | 0.8812 |
|
55 |
+
| 0.8539 | 0.22 | 1000 | 0.8675 |
|
56 |
+
| 0.8539 | 0.27 | 1200 | 0.8434 |
|
57 |
+
| 0.8539 | 0.31 | 1400 | 0.8311 |
|
58 |
+
| 0.8396 | 0.36 | 1600 | 0.8195 |
|
59 |
+
| 0.8396 | 0.4 | 1800 | 0.8073 |
|
60 |
+
| 0.7841 | 0.44 | 2000 | 0.8007 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
|
63 |
### Framework versions
|