# AccVideo: Accelerating Video Diffusion Model with Synthetic Dataset This repository is the official PyTorch implementation of [AccVideo](https://arxiv.org/abs/2503.19462). AccVideo is a novel efficient distillation method to accelerate video diffusion models with synthetic datset. Our method is 8.5x faster than HunyuanVideo. [![arXiv](https://img.shields.io/badge/arXiv-2503.19462-b31b1b.svg)](https://arxiv.org/abs/2503.19462) [![Project Page](https://img.shields.io/badge/Project-Website-green)](https://aejion.github.io/accvideo/) [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Models-yellow)](https://huggingface.co/aejion/AccVideo) ## 🔥🔥🔥 News * Jun 3, 2025: We release the inference code and [model weights](https://huggingface.co/aejion/AccVideo-WanX-I2V-480P-14B) of AccVideo based on WanXI2V-480P-14B. * May 26, 2025: We release the inference code and [model weights](https://huggingface.co/aejion/AccVideo-WanX-T2V-14B) of AccVideo based on WanXT2V-14B. * Mar 31, 2025: [ComfyUI-Kijai (FP8 Inference)](https://huggingface.co/Kijai/HunyuanVideo_comfy/blob/main/accvideo-t2v-5-steps_fp8_e4m3fn.safetensors): ComfyUI-Integration by [Kijai](https://huggingface.co/Kijai) * Mar 26, 2025: We release the inference code and [model weights](https://huggingface.co/aejion/AccVideo) of AccVideo based on HunyuanT2V. ## 🎥 Demo (Based on HunyuanT2V) https://github.com/user-attachments/assets/59f3c5db-d585-4773-8d92-366c1eb040f0 ## 🎥 Demo (Based on WanXT2V-14B) https://github.com/user-attachments/assets/ff9724da-b76c-478d-a9bf-0ee7240494b2 ## 🎥 Demo (Based on WanXI2V-480P-14B) ## 📑 Open-source Plan - [x] Inference - [x] Checkpoints - [ ] Multi-GPU Inference - [ ] Synthetic Video Dataset, SynVid - [ ] Training ## 🔧 Installation The code is tested on Python 3.10.0, CUDA 11.8 and A100. ``` conda create -n accvideo python==3.10.0 conda activate accvideo pip install torch==2.4.0 torchvision==0.19.0 torchaudio==2.4.0 --index-url https://download.pytorch.org/whl/cu118 pip install -r requirements.txt pip install flash-attn==2.7.3 --no-build-isolation pip install "huggingface_hub[cli]" ``` ## 🤗 Checkpoints To download the checkpoints (based on HunyuanT2V), use the following command: ```bash # Download the model weight huggingface-cli download aejion/AccVideo --local-dir ./ckpts ``` To download the checkpoints (based on WanX-T2V-14B), use the following command: ```bash # Download the model weight huggingface-cli download aejion/AccVideo-WanX-T2V-14B --local-dir ./wanx_t2v_ckpts ``` To download the checkpoints (based on WanX-I2V-480P-14B), use the following command: ```bash # Download the model weight huggingface-cli download aejion/AccVideo-WanX-I2V-480P-14B --local-dir ./wanx_i2v_ckpts ``` ## 🚀 Inference We recommend using a GPU with 80GB of memory. We use AccVideo to distill Hunyuan and WanX. ### Inference for HunyuanT2V To run the inference, use the following command: ```bash export MODEL_BASE=./ckpts python sample_t2v.py \ --height 544 \ --width 960 \ --num_frames 93 \ --num_inference_steps 5 \ --guidance_scale 1 \ --embedded_cfg_scale 6 \ --flow_shift 7 \ --flow-reverse \ --prompt_file ./assets/prompt.txt \ --seed 1024 \ --output_path ./results/accvideo-544p \ --model_path ./ckpts \ --dit-weight ./ckpts/accvideo-t2v-5-steps/diffusion_pytorch_model.pt ``` The following table shows the comparisons on inference time using a single A100 GPU: | Model | Setting(height/width/frame) | Inference Time(s) | |:------------:|:---------------------------:|:-----------------:| | HunyuanVideo | 720px1280px129f | 3234 | | Ours | 720px1280px129f | 380(8.5x faster) | | HunyuanVideo | 544px960px93f | 704 | | Ours | 544px960px93f | 91(7.7x faster) | ### Inference for WanXT2V To run the inference, use the following command: ```bash python sample_wanx_t2v.py \ --task t2v-14B \ --size 832*480 \ --ckpt_dir ./wanx_t2v_ckpts \ --sample_solver 'unipc' \ --save_dir ./results/accvideo_wanx_14B \ --sample_steps 10 ``` The following table shows the comparisons on inference time using a single A100 GPU: | Model | Setting(height/width/frame) | Inference Time(s) | |:-----:|:---------------------------:|:-----------------:| | WanX | 480px832px81f | 932 | | Ours | 480px832px81f | 97(9.6x faster) | ### Inference for WanXI2V-480P To run the inference, use the following command: ```bash python sample_wanx_i2v.py \ --task i2v-14B \ --size 832*480 \ --ckpt_dir ./wanx_i2v_ckpts \ --sample_solver 'unipc' \ --save_dir ./results/accvideo_wanx_i2v_14B \ --sample_steps 10 ``` The following table shows the comparisons on inference time using a single A100 GPU: | Model | Setting(height/width/frame) | Inference Time(s) | |:--------:|:---------------------------:|:-----------------:| | WanX-I2V | 480px832px81f | 768 | | Ours | 480px832px81f | 112(6.8x faster) | ## 🏆 VBench Results We report VBench evaluation results for our distilled models. We utilized the respective augmented prompts provided by the VBench team to generate videos. ([HunyuanVideo augmented prompts](https://github.com/Vchitect/VBench/blob/master/prompts/augmented_prompts/hunyuan_all_dimension.txt) for AccVideo-HunyuanT2V and [WanX augmented prompts](https://github.com/Vchitect/VBench/blob/master/prompts/augmented_prompts/Wan2.1-T2V-1.3B/all_dimension_aug_wanx_seed42.txt) for AccVideo-WanXT2V) | Model | Setting(height/width/frame) | Total Score | Quality Score | Semantic Score | Subject Consistency | Background Consistency | Temporal Flickering | Motion Smoothness | Dynamic Degree | Aesthetic Quality | Image Quality | Object Class | Multiple Objects | Human Action | Color | Spatial Relationship | Scene | Appearance Style | Temporal Style | Overall Consistency | |:-------------------:|:---------------------------:|:-----------:|---------------|----------------|---------------------|------------------------|---------------------|-------------------|----------------|-------------------|---------------|--------------|------------------|--------------|--------|----------------------|--------|------------------|----------------|---------------------| | AccVideo-HunyuanT2V | 544px960px93f | 83.26% | 84.58% | 77.96% | 94.46% | 97.45% | 99.18% | 98.79% | 75.00% | 62.08% | 65.64% | 92.99% | 67.33% | 95.60% | 94.11% | 75.70% | 54.72% | 19.87% | 23.71% | 27.21% | | AccVideo-WanXT2V | 480px832px81f | 85.95% | 86.62% | 83.25% | 95.02% | 97.75% | 99.54% | 97.95% | 93.33% | 64.21% | 68.42% | 98.38% | 86.58% | 97.40% | 92.04% | 75.68% | 59.82% | 23.88% | 24.62% | 27.34% | ## 🔗 BibTeX If you find [AccVideo](https://arxiv.org/abs/2503.19462) useful for your research and applications, please cite using this BibTeX: ```BibTeX @article{zhang2025accvideo, title={AccVideo: Accelerating Video Diffusion Model with Synthetic Dataset}, author={Zhang, Haiyu and Chen, Xinyuan and Wang, Yaohui and Liu, Xihui and Wang, Yunhong and Qiao, Yu}, journal={arXiv preprint arXiv:2503.19462}, year={2025} } ``` ## Acknowledgements The code is built upon [FastVideo](https://github.com/hao-ai-lab/FastVideo) and [HunyuanVideo](https://github.com/Tencent/HunyuanVideo), we thank all the contributors for open-sourcing.