aejion commited on
Commit
ad1d38e
Β·
verified Β·
1 Parent(s): 290598c

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +170 -0
README.md ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # AccVideo: Accelerating Video Diffusion Model with Synthetic Dataset
2
+
3
+ This repository is the official PyTorch implementation of [AccVideo](https://arxiv.org/abs/2503.19462). AccVideo is a novel efficient distillation method to accelerate video diffusion models with synthetic datset. Our method is 8.5x faster than HunyuanVideo.
4
+
5
+
6
+ [![arXiv](https://img.shields.io/badge/arXiv-2503.19462-b31b1b.svg)](https://arxiv.org/abs/2503.19462)
7
+ [![Project Page](https://img.shields.io/badge/Project-Website-green)](https://aejion.github.io/accvideo/)
8
+ [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Models-yellow)](https://huggingface.co/aejion/AccVideo)
9
+
10
+ ## πŸ”₯πŸ”₯πŸ”₯ News
11
+
12
+ * Jun 3, 2025: We release the inference code and [model weights](https://huggingface.co/aejion/AccVideo-WanX-I2V-480P-14B) of AccVideo based on WanXI2V-480P-14B.
13
+ * May 26, 2025: We release the inference code and [model weights](https://huggingface.co/aejion/AccVideo-WanX-T2V-14B) of AccVideo based on WanXT2V-14B.
14
+ * Mar 31, 2025: [ComfyUI-Kijai (FP8 Inference)](https://huggingface.co/Kijai/HunyuanVideo_comfy/blob/main/accvideo-t2v-5-steps_fp8_e4m3fn.safetensors): ComfyUI-Integration by [Kijai](https://huggingface.co/Kijai)
15
+ * Mar 26, 2025: We release the inference code and [model weights](https://huggingface.co/aejion/AccVideo) of AccVideo based on HunyuanT2V.
16
+
17
+
18
+ ## πŸŽ₯ Demo (Based on HunyuanT2V)
19
+
20
+
21
+ https://github.com/user-attachments/assets/59f3c5db-d585-4773-8d92-366c1eb040f0
22
+
23
+ ## πŸŽ₯ Demo (Based on WanXT2V-14B)
24
+
25
+
26
+ https://github.com/user-attachments/assets/ff9724da-b76c-478d-a9bf-0ee7240494b2
27
+
28
+ ## πŸŽ₯ Demo (Based on WanXI2V-480P-14B)
29
+
30
+
31
+
32
+ ## πŸ“‘ Open-source Plan
33
+
34
+ - [x] Inference
35
+ - [x] Checkpoints
36
+ - [ ] Multi-GPU Inference
37
+ - [ ] Synthetic Video Dataset, SynVid
38
+ - [ ] Training
39
+
40
+
41
+ ## πŸ”§ Installation
42
+ The code is tested on Python 3.10.0, CUDA 11.8 and A100.
43
+ ```
44
+ conda create -n accvideo python==3.10.0
45
+ conda activate accvideo
46
+
47
+ pip install torch==2.4.0 torchvision==0.19.0 torchaudio==2.4.0 --index-url https://download.pytorch.org/whl/cu118
48
+ pip install -r requirements.txt
49
+ pip install flash-attn==2.7.3 --no-build-isolation
50
+ pip install "huggingface_hub[cli]"
51
+ ```
52
+
53
+ ## πŸ€— Checkpoints
54
+ To download the checkpoints (based on HunyuanT2V), use the following command:
55
+ ```bash
56
+ # Download the model weight
57
+ huggingface-cli download aejion/AccVideo --local-dir ./ckpts
58
+ ```
59
+
60
+ To download the checkpoints (based on WanX-T2V-14B), use the following command:
61
+ ```bash
62
+ # Download the model weight
63
+ huggingface-cli download aejion/AccVideo-WanX-T2V-14B --local-dir ./wanx_t2v_ckpts
64
+ ```
65
+
66
+ To download the checkpoints (based on WanX-I2V-480P-14B), use the following command:
67
+ ```bash
68
+ # Download the model weight
69
+ huggingface-cli download aejion/AccVideo-WanX-I2V-480P-14B --local-dir ./wanx_i2v_ckpts
70
+ ```
71
+
72
+ ## πŸš€ Inference
73
+ We recommend using a GPU with 80GB of memory. We use AccVideo to distill Hunyuan and WanX.
74
+
75
+ ### Inference for HunyuanT2V
76
+
77
+ To run the inference, use the following command:
78
+ ```bash
79
+ export MODEL_BASE=./ckpts
80
+ python sample_t2v.py \
81
+ --height 544 \
82
+ --width 960 \
83
+ --num_frames 93 \
84
+ --num_inference_steps 5 \
85
+ --guidance_scale 1 \
86
+ --embedded_cfg_scale 6 \
87
+ --flow_shift 7 \
88
+ --flow-reverse \
89
+ --prompt_file ./assets/prompt.txt \
90
+ --seed 1024 \
91
+ --output_path ./results/accvideo-544p \
92
+ --model_path ./ckpts \
93
+ --dit-weight ./ckpts/accvideo-t2v-5-steps/diffusion_pytorch_model.pt
94
+ ```
95
+
96
+ The following table shows the comparisons on inference time using a single A100 GPU:
97
+
98
+ | Model | Setting(height/width/frame) | Inference Time(s) |
99
+ |:------------:|:---------------------------:|:-----------------:|
100
+ | HunyuanVideo | 720px1280px129f | 3234 |
101
+ | Ours | 720px1280px129f | 380(8.5x faster) |
102
+ | HunyuanVideo | 544px960px93f | 704 |
103
+ | Ours | 544px960px93f | 91(7.7x faster) |
104
+
105
+ ### Inference for WanXT2V
106
+
107
+ To run the inference, use the following command:
108
+ ```bash
109
+ python sample_wanx_t2v.py \
110
+ --task t2v-14B \
111
+ --size 832*480 \
112
+ --ckpt_dir ./wanx_t2v_ckpts \
113
+ --sample_solver 'unipc' \
114
+ --save_dir ./results/accvideo_wanx_14B \
115
+ --sample_steps 10
116
+ ```
117
+
118
+ The following table shows the comparisons on inference time using a single A100 GPU:
119
+
120
+ | Model | Setting(height/width/frame) | Inference Time(s) |
121
+ |:-----:|:---------------------------:|:-----------------:|
122
+ | WanX | 480px832px81f | 932 |
123
+ | Ours | 480px832px81f | 97(9.6x faster) |
124
+
125
+ ### Inference for WanXI2V-480P
126
+
127
+ To run the inference, use the following command:
128
+ ```bash
129
+ python sample_wanx_i2v.py \
130
+ --task i2v-14B \
131
+ --size 832*480 \
132
+ --ckpt_dir ./wanx_i2v_ckpts \
133
+ --sample_solver 'unipc' \
134
+ --save_dir ./results/accvideo_wanx_i2v_14B \
135
+ --sample_steps 10
136
+ ```
137
+
138
+ The following table shows the comparisons on inference time using a single A100 GPU:
139
+
140
+ | Model | Setting(height/width/frame) | Inference Time(s) |
141
+ |:--------:|:---------------------------:|:-----------------:|
142
+ | WanX-I2V | 480px832px81f | 768 |
143
+ | Ours | 480px832px81f | 112(6.8x faster) |
144
+
145
+
146
+ ## πŸ† VBench Results
147
+
148
+ We report VBench evaluation results for our distilled models. We utilized the respective augmented prompts provided by the VBench team to generate videos. ([HunyuanVideo augmented prompts](https://github.com/Vchitect/VBench/blob/master/prompts/augmented_prompts/hunyuan_all_dimension.txt) for AccVideo-HunyuanT2V and [WanX augmented prompts](https://github.com/Vchitect/VBench/blob/master/prompts/augmented_prompts/Wan2.1-T2V-1.3B/all_dimension_aug_wanx_seed42.txt) for AccVideo-WanXT2V)
149
+
150
+ | Model | Setting(height/width/frame) | Total Score | Quality Score | Semantic Score | Subject Consistency | Background Consistency | Temporal Flickering | Motion Smoothness | Dynamic Degree | Aesthetic Quality | Image Quality | Object Class | Multiple Objects | Human Action | Color | Spatial Relationship | Scene | Appearance Style | Temporal Style | Overall Consistency |
151
+ |:-------------------:|:---------------------------:|:-----------:|---------------|----------------|---------------------|------------------------|---------------------|-------------------|----------------|-------------------|---------------|--------------|------------------|--------------|--------|----------------------|--------|------------------|----------------|---------------------|
152
+ | AccVideo-HunyuanT2V | 544px960px93f | 83.26% | 84.58% | 77.96% | 94.46% | 97.45% | 99.18% | 98.79% | 75.00% | 62.08% | 65.64% | 92.99% | 67.33% | 95.60% | 94.11% | 75.70% | 54.72% | 19.87% | 23.71% | 27.21% |
153
+ | AccVideo-WanXT2V | 480px832px81f | 85.95% | 86.62% | 83.25% | 95.02% | 97.75% | 99.54% | 97.95% | 93.33% | 64.21% | 68.42% | 98.38% | 86.58% | 97.40% | 92.04% | 75.68% | 59.82% | 23.88% | 24.62% | 27.34% |
154
+
155
+
156
+ ## πŸ”— BibTeX
157
+
158
+ If you find [AccVideo](https://arxiv.org/abs/2503.19462) useful for your research and applications, please cite using this BibTeX:
159
+
160
+ ```BibTeX
161
+ @article{zhang2025accvideo,
162
+ title={AccVideo: Accelerating Video Diffusion Model with Synthetic Dataset},
163
+ author={Zhang, Haiyu and Chen, Xinyuan and Wang, Yaohui and Liu, Xihui and Wang, Yunhong and Qiao, Yu},
164
+ journal={arXiv preprint arXiv:2503.19462},
165
+ year={2025}
166
+ }
167
+ ```
168
+
169
+ ## Acknowledgements
170
+ The code is built upon [FastVideo](https://github.com/hao-ai-lab/FastVideo) and [HunyuanVideo](https://github.com/Tencent/HunyuanVideo), we thank all the contributors for open-sourcing.