--- library_name: transformers base_model: finiteautomata/bertweet-base-sentiment-analysis tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: bertweet-sentiment-finetuned results: [] --- # bertweet-sentiment-finetuned This model is a fine-tuned version of [finiteautomata/bertweet-base-sentiment-analysis](https://huggingface.co/finiteautomata/bertweet-base-sentiment-analysis) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5533 - Accuracy: 0.875 - F1: 0.8633 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 60 | 0.4306 | 0.85 | 0.8349 | | No log | 2.0 | 120 | 0.3752 | 0.8917 | 0.8844 | | No log | 3.0 | 180 | 0.5461 | 0.8417 | 0.8230 | | No log | 4.0 | 240 | 0.5316 | 0.875 | 0.8633 | | No log | 5.0 | 300 | 0.5533 | 0.875 | 0.8633 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.4.1+cpu - Datasets 3.1.0 - Tokenizers 0.21.0