adriansanz commited on
Commit
24a1d79
1 Parent(s): 3dbd52c

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: pysentimiento/robertuito-sentiment-analysis
3
+ library_name: setfit
4
+ metrics:
5
+ - accuracy
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: Aquest text és valid per a un cercador de tràmits d'un ajuntament
14
+ - text: Aquest text és ofensiu o violent o negatiu o inapropiat per a un cercador
15
+ de tràmits d'un ajuntament
16
+ - text: Aquest text és valid per a un cercador de tràmits d'un ajuntament
17
+ - text: Aquest text és valid per a un cercador de tràmits d'un ajuntament
18
+ - text: Aquest text és ofensiu o violent o negatiu o inapropiat per a un cercador
19
+ de tràmits d'un ajuntament
20
+ inference: true
21
+ ---
22
+
23
+ # SetFit with pysentimiento/robertuito-sentiment-analysis
24
+
25
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [pysentimiento/robertuito-sentiment-analysis](https://huggingface.co/pysentimiento/robertuito-sentiment-analysis) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
26
+
27
+ The model has been trained using an efficient few-shot learning technique that involves:
28
+
29
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
30
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
31
+
32
+ ## Model Details
33
+
34
+ ### Model Description
35
+ - **Model Type:** SetFit
36
+ - **Sentence Transformer body:** [pysentimiento/robertuito-sentiment-analysis](https://huggingface.co/pysentimiento/robertuito-sentiment-analysis)
37
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
38
+ - **Maximum Sequence Length:** 128 tokens
39
+ - **Number of Classes:** 2 classes
40
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
41
+ <!-- - **Language:** Unknown -->
42
+ <!-- - **License:** Unknown -->
43
+
44
+ ### Model Sources
45
+
46
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
47
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
48
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
49
+
50
+ ### Model Labels
51
+ | Label | Examples |
52
+ |:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
53
+ | 0 | <ul><li>"Aquest text és ofensiu o violent o negatiu o inapropiat per a un cercador de tràmits d'un ajuntament"</li><li>"Aquest text és ofensiu o violent o negatiu o inapropiat per a un cercador de tràmits d'un ajuntament"</li><li>"Aquest text és ofensiu o violent o negatiu o inapropiat per a un cercador de tràmits d'un ajuntament"</li></ul> |
54
+ | 1 | <ul><li>"Aquest text és valid per a un cercador de tràmits d'un ajuntament"</li><li>"Aquest text és valid per a un cercador de tràmits d'un ajuntament"</li><li>"Aquest text és valid per a un cercador de tràmits d'un ajuntament"</li></ul> |
55
+
56
+ ## Uses
57
+
58
+ ### Direct Use for Inference
59
+
60
+ First install the SetFit library:
61
+
62
+ ```bash
63
+ pip install setfit
64
+ ```
65
+
66
+ Then you can load this model and run inference.
67
+
68
+ ```python
69
+ from setfit import SetFitModel
70
+
71
+ # Download from the 🤗 Hub
72
+ model = SetFitModel.from_pretrained("adriansanz/sentimentv2")
73
+ # Run inference
74
+ preds = model("Aquest text és valid per a un cercador de tràmits d'un ajuntament")
75
+ ```
76
+
77
+ <!--
78
+ ### Downstream Use
79
+
80
+ *List how someone could finetune this model on their own dataset.*
81
+ -->
82
+
83
+ <!--
84
+ ### Out-of-Scope Use
85
+
86
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
87
+ -->
88
+
89
+ <!--
90
+ ## Bias, Risks and Limitations
91
+
92
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
93
+ -->
94
+
95
+ <!--
96
+ ### Recommendations
97
+
98
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
99
+ -->
100
+
101
+ ## Training Details
102
+
103
+ ### Training Set Metrics
104
+ | Training set | Min | Median | Max |
105
+ |:-------------|:----|:-------|:----|
106
+ | Word count | 12 | 15.0 | 18 |
107
+
108
+ | Label | Training Sample Count |
109
+ |:------|:----------------------|
110
+ | 0 | 20 |
111
+ | 1 | 20 |
112
+
113
+ ### Training Hyperparameters
114
+ - batch_size: (16, 16)
115
+ - num_epochs: (4, 4)
116
+ - max_steps: -1
117
+ - sampling_strategy: oversampling
118
+ - body_learning_rate: (2e-05, 1e-05)
119
+ - head_learning_rate: 0.01
120
+ - loss: CosineSimilarityLoss
121
+ - distance_metric: cosine_distance
122
+ - margin: 0.25
123
+ - end_to_end: False
124
+ - use_amp: False
125
+ - warmup_proportion: 0.1
126
+ - seed: 42
127
+ - eval_max_steps: -1
128
+ - load_best_model_at_end: True
129
+
130
+ ### Training Results
131
+ | Epoch | Step | Training Loss | Validation Loss |
132
+ |:------:|:----:|:-------------:|:---------------:|
133
+ | 0.0189 | 1 | 0.2722 | - |
134
+ | 0.9434 | 50 | 0.0004 | - |
135
+ | 1.8868 | 100 | 0.0003 | - |
136
+ | 2.8302 | 150 | 0.0002 | - |
137
+ | 3.7736 | 200 | 0.0001 | - |
138
+
139
+ ### Framework Versions
140
+ - Python: 3.10.12
141
+ - SetFit: 1.0.3
142
+ - Sentence Transformers: 3.0.1
143
+ - Transformers: 4.39.0
144
+ - PyTorch: 2.4.0+cu121
145
+ - Datasets: 2.21.0
146
+ - Tokenizers: 0.15.2
147
+
148
+ ## Citation
149
+
150
+ ### BibTeX
151
+ ```bibtex
152
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
153
+ doi = {10.48550/ARXIV.2209.11055},
154
+ url = {https://arxiv.org/abs/2209.11055},
155
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
156
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
157
+ title = {Efficient Few-Shot Learning Without Prompts},
158
+ publisher = {arXiv},
159
+ year = {2022},
160
+ copyright = {Creative Commons Attribution 4.0 International}
161
+ }
162
+ ```
163
+
164
+ <!--
165
+ ## Glossary
166
+
167
+ *Clearly define terms in order to be accessible across audiences.*
168
+ -->
169
+
170
+ <!--
171
+ ## Model Card Authors
172
+
173
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
174
+ -->
175
+
176
+ <!--
177
+ ## Model Card Contact
178
+
179
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
180
+ -->
config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "pysentimiento/robertuito-sentiment-analysis",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "id2label": {
15
+ "0": "NEG",
16
+ "1": "NEU",
17
+ "2": "POS"
18
+ },
19
+ "initializer_range": 0.02,
20
+ "intermediate_size": 3072,
21
+ "label2id": {
22
+ "NEG": 0,
23
+ "NEU": 1,
24
+ "POS": 2
25
+ },
26
+ "layer_norm_eps": 1e-12,
27
+ "max_position_embeddings": 130,
28
+ "model_type": "roberta",
29
+ "num_attention_heads": 12,
30
+ "num_hidden_layers": 12,
31
+ "pad_token_id": 1,
32
+ "position_embedding_type": "absolute",
33
+ "problem_type": "single_label_classification",
34
+ "torch_dtype": "float32",
35
+ "transformers_version": "4.39.0",
36
+ "type_vocab_size": 1,
37
+ "use_cache": true,
38
+ "vocab_size": 30002
39
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.39.0",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": null
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:945fda32b93fb19ae77527265198a7a5fdfc8f6b4c5c175c3f7edd43029d7a24
3
+ size 435177296
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a7d32783e749d160bee90fba4dea2cc95c9439babcdcb5c519b6c95161e39f6
3
+ size 7007
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "<mask>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "430": {
44
+ "content": "@usuario",
45
+ "lstrip": false,
46
+ "normalized": true,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": false
50
+ },
51
+ "27394": {
52
+ "content": "url",
53
+ "lstrip": false,
54
+ "normalized": true,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": false
58
+ },
59
+ "30000": {
60
+ "content": "hashtag",
61
+ "lstrip": false,
62
+ "normalized": true,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": false
66
+ },
67
+ "30001": {
68
+ "content": "emoji",
69
+ "lstrip": false,
70
+ "normalized": true,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": false
74
+ }
75
+ },
76
+ "bos_token": "<s>",
77
+ "clean_up_tokenization_spaces": true,
78
+ "cls_token": "<s>",
79
+ "eos_token": "</s>",
80
+ "mask_token": "<mask>",
81
+ "max_length": 128,
82
+ "model_max_length": 128,
83
+ "pad_token": "<pad>",
84
+ "sep_token": "</s>",
85
+ "stride": 0,
86
+ "tokenizer_class": "PreTrainedTokenizerFast",
87
+ "truncation_side": "right",
88
+ "truncation_strategy": "longest_first",
89
+ "unk_token": "<unk>"
90
+ }