--- license: apache-2.0 base_model: projecte-aina/roberta-base-ca-v2-cased-te tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: 080524_epoch_1 results: [] --- # 080524_epoch_1 This model is a fine-tuned version of [projecte-aina/roberta-base-ca-v2-cased-te](https://huggingface.co/projecte-aina/roberta-base-ca-v2-cased-te) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7794 - Accuracy: 0.7395 - Precision: 0.7816 - Recall: 0.7395 - F1: 0.7294 - Ratio: 0.6933 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 2 - seed: 47 - gradient_accumulation_steps: 2 - total_train_batch_size: 20 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - lr_scheduler_warmup_steps: 4 - num_epochs: 1 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Ratio | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:| | 3.1579 | 0.1176 | 10 | 2.2074 | 0.5126 | 0.5335 | 0.5126 | 0.4225 | 0.8950 | | 1.5576 | 0.2353 | 20 | 1.3600 | 0.5504 | 0.5760 | 0.5504 | 0.5092 | 0.2101 | | 1.1011 | 0.3529 | 30 | 0.9525 | 0.5588 | 0.5625 | 0.5588 | 0.5522 | 0.6218 | | 0.9083 | 0.4706 | 40 | 0.8505 | 0.6471 | 0.6471 | 0.6471 | 0.6470 | 0.5084 | | 0.8014 | 0.5882 | 50 | 0.8729 | 0.6765 | 0.7659 | 0.6765 | 0.6468 | 0.7899 | | 0.7514 | 0.7059 | 60 | 0.7322 | 0.7563 | 0.7610 | 0.7563 | 0.7552 | 0.5672 | | 0.7259 | 0.8235 | 70 | 0.7631 | 0.7437 | 0.7730 | 0.7437 | 0.7366 | 0.6639 | | 0.7605 | 0.9412 | 80 | 0.7794 | 0.7395 | 0.7816 | 0.7395 | 0.7294 | 0.6933 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1