--- license: apache-2.0 base_model: projecte-aina/roberta-base-ca-v2-cased-te tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: 080524_epoch_9 results: [] --- # 080524_epoch_9 This model is a fine-tuned version of [projecte-aina/roberta-base-ca-v2-cased-te](https://huggingface.co/projecte-aina/roberta-base-ca-v2-cased-te) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7890 - Accuracy: 0.8235 - Precision: 0.8561 - Recall: 0.8235 - F1: 0.8194 - Ratio: 0.6513 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 2 - seed: 47 - gradient_accumulation_steps: 2 - total_train_batch_size: 20 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - lr_scheduler_warmup_steps: 4 - num_epochs: 1 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Ratio | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:| | 0.2923 | 0.1176 | 10 | 0.8526 | 0.8151 | 0.8469 | 0.8151 | 0.8108 | 0.6513 | | 0.3108 | 0.2353 | 20 | 0.8767 | 0.8109 | 0.8528 | 0.8109 | 0.8051 | 0.6723 | | 0.3049 | 0.3529 | 30 | 0.8242 | 0.8235 | 0.8455 | 0.8235 | 0.8207 | 0.6261 | | 0.2983 | 0.4706 | 40 | 0.8193 | 0.8235 | 0.8455 | 0.8235 | 0.8207 | 0.6261 | | 0.2921 | 0.5882 | 50 | 0.8231 | 0.8235 | 0.8455 | 0.8235 | 0.8207 | 0.6261 | | 0.3826 | 0.7059 | 60 | 0.8226 | 0.8235 | 0.8561 | 0.8235 | 0.8194 | 0.6513 | | 0.3421 | 0.8235 | 70 | 0.8075 | 0.8235 | 0.8561 | 0.8235 | 0.8194 | 0.6513 | | 0.3397 | 0.9412 | 80 | 0.7905 | 0.8235 | 0.8561 | 0.8235 | 0.8194 | 0.6513 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1