Update README.md
Browse files
README.md
CHANGED
@@ -1,205 +1,88 @@
|
|
1 |
---
|
2 |
language:
|
3 |
-
- en
|
4 |
-
- ml
|
5 |
-
- hi
|
6 |
-
- ja
|
7 |
-
- fr
|
8 |
license: apache-2.0
|
9 |
metrics:
|
10 |
-
- accuracy
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
---
|
12 |
-
#
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
|
17 |
|
18 |
## Model Details
|
19 |
|
20 |
### Model Description
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
- **
|
27 |
-
- **
|
28 |
-
- **Shared by [optional]:** [More Information Needed]
|
29 |
-
- **Model type:** [More Information Needed]
|
30 |
-
- **Language(s) (NLP):** [More Information Needed]
|
31 |
-
- **License:** [More Information Needed]
|
32 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
33 |
-
|
34 |
-
### Model Sources [optional]
|
35 |
|
36 |
-
|
37 |
|
38 |
-
- **Repository:** [
|
39 |
-
- **Paper [optional]:** [
|
40 |
-
- **Demo [optional]:** [
|
41 |
|
42 |
## Uses
|
43 |
|
44 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
45 |
-
|
46 |
### Direct Use
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
|
52 |
-
### Downstream Use
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
|
58 |
### Out-of-Scope Use
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
|
64 |
## Bias, Risks, and Limitations
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
|
70 |
### Recommendations
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
75 |
-
|
76 |
-
## How to Get Started with the Model
|
77 |
-
|
78 |
-
Use the code below to get started with the model.
|
79 |
-
|
80 |
-
[More Information Needed]
|
81 |
-
|
82 |
-
## Training Details
|
83 |
-
|
84 |
-
### Training Data
|
85 |
-
|
86 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
87 |
-
|
88 |
-
[More Information Needed]
|
89 |
-
|
90 |
-
### Training Procedure
|
91 |
-
|
92 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
93 |
-
|
94 |
-
#### Preprocessing [optional]
|
95 |
-
|
96 |
-
[More Information Needed]
|
97 |
-
|
98 |
-
|
99 |
-
#### Training Hyperparameters
|
100 |
-
|
101 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
102 |
-
|
103 |
-
#### Speeds, Sizes, Times [optional]
|
104 |
-
|
105 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
106 |
-
|
107 |
-
[More Information Needed]
|
108 |
-
|
109 |
-
## Evaluation
|
110 |
-
|
111 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
112 |
-
|
113 |
-
### Testing Data, Factors & Metrics
|
114 |
-
|
115 |
-
#### Testing Data
|
116 |
-
|
117 |
-
<!-- This should link to a Dataset Card if possible. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Factors
|
122 |
-
|
123 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
#### Metrics
|
128 |
-
|
129 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
130 |
-
|
131 |
-
[More Information Needed]
|
132 |
-
|
133 |
-
### Results
|
134 |
-
|
135 |
-
[More Information Needed]
|
136 |
-
|
137 |
-
#### Summary
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
## Model Examination [optional]
|
142 |
-
|
143 |
-
<!-- Relevant interpretability work for the model goes here -->
|
144 |
-
|
145 |
-
[More Information Needed]
|
146 |
-
|
147 |
-
## Environmental Impact
|
148 |
-
|
149 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
150 |
-
|
151 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
152 |
-
|
153 |
-
- **Hardware Type:** [More Information Needed]
|
154 |
-
- **Hours used:** [More Information Needed]
|
155 |
-
- **Cloud Provider:** [More Information Needed]
|
156 |
-
- **Compute Region:** [More Information Needed]
|
157 |
-
- **Carbon Emitted:** [More Information Needed]
|
158 |
-
|
159 |
-
## Technical Specifications [optional]
|
160 |
-
|
161 |
-
### Model Architecture and Objective
|
162 |
-
|
163 |
-
[More Information Needed]
|
164 |
-
|
165 |
-
### Compute Infrastructure
|
166 |
-
|
167 |
-
[More Information Needed]
|
168 |
-
|
169 |
-
#### Hardware
|
170 |
-
|
171 |
-
[More Information Needed]
|
172 |
-
|
173 |
-
#### Software
|
174 |
-
|
175 |
-
[More Information Needed]
|
176 |
-
|
177 |
-
## Citation [optional]
|
178 |
-
|
179 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
180 |
-
|
181 |
-
**BibTeX:**
|
182 |
-
|
183 |
-
[More Information Needed]
|
184 |
-
|
185 |
-
**APA:**
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## Glossary [optional]
|
190 |
-
|
191 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
192 |
|
193 |
-
|
194 |
|
195 |
-
|
196 |
|
197 |
-
|
|
|
|
|
|
|
198 |
|
199 |
-
|
|
|
200 |
|
201 |
-
|
|
|
|
|
|
|
|
|
202 |
|
203 |
-
|
|
|
|
|
|
|
204 |
|
205 |
-
|
|
|
1 |
---
|
2 |
language:
|
3 |
+
- en
|
|
|
|
|
|
|
|
|
4 |
license: apache-2.0
|
5 |
metrics:
|
6 |
+
- accuracy
|
7 |
+
base_model: resnet50
|
8 |
+
pipeline_tag: image-classification
|
9 |
+
library_name: keras
|
10 |
+
tags:
|
11 |
+
- medical
|
12 |
+
- ecg
|
13 |
+
- classification
|
14 |
+
- deep-learning
|
15 |
+
- healthcare
|
16 |
+
- tensorflow
|
17 |
+
- keras
|
18 |
---
|
19 |
+
# ECG Classification Model
|
20 |
|
21 |
+
This deep learning model is designed for ECG image classification, fine-tuned using ResNet-50. It can classify ECG images into different categories to assist in heart disease detection.
|
|
|
|
|
22 |
|
23 |
## Model Details
|
24 |
|
25 |
### Model Description
|
26 |
|
27 |
+
- **Developed by:** Adithian
|
28 |
+
- **Funded by:** Adi
|
29 |
+
- **Shared by:** Adi
|
30 |
+
- **Model type:** Deep Learning (ResNet-based ECG Classification)
|
31 |
+
- **License:** Apache 2.0
|
32 |
+
- **Finetuned from model:** ResNet-50
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
### Model Sources
|
35 |
|
36 |
+
- **Repository:** [Your Hugging Face Repo Link]
|
37 |
+
- **Paper [optional]:** [Link if available]
|
38 |
+
- **Demo [optional]:** [Link if available]
|
39 |
|
40 |
## Uses
|
41 |
|
|
|
|
|
42 |
### Direct Use
|
43 |
|
44 |
+
This model can be used to classify ECG images into different categories based on heart disease conditions. It can assist in medical research and preliminary diagnosis.
|
|
|
|
|
45 |
|
46 |
+
### Downstream Use
|
47 |
|
48 |
+
This model can be integrated into larger healthcare applications for automated ECG analysis.
|
|
|
|
|
49 |
|
50 |
### Out-of-Scope Use
|
51 |
|
52 |
+
- This model is **not a replacement for professional medical diagnosis**.
|
53 |
+
- Should not be used for self-diagnosis without expert consultation.
|
|
|
54 |
|
55 |
## Bias, Risks, and Limitations
|
56 |
|
57 |
+
- Model accuracy depends on the diversity of training data.
|
58 |
+
- It may not generalize well to datasets from different sources.
|
59 |
+
- False positives/negatives could impact clinical decision-making.
|
60 |
|
61 |
### Recommendations
|
62 |
|
63 |
+
Users should be made aware of the risks, biases, and limitations before using the model in real-world applications.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
+
## How to Use the Model
|
66 |
|
67 |
+
Use the following code to load and use the model:
|
68 |
|
69 |
+
```python
|
70 |
+
import tensorflow as tf
|
71 |
+
from PIL import Image
|
72 |
+
import numpy as np
|
73 |
|
74 |
+
# Load the model
|
75 |
+
model = tf.keras.models.load_model("https://huggingface.co/your-username/ecg_model/resolve/main/model.keras")
|
76 |
|
77 |
+
# Preprocess input image
|
78 |
+
def preprocess_image(image_path):
|
79 |
+
img = Image.open(image_path).convert("RGB").resize((224, 224))
|
80 |
+
img = np.array(img) / 255.0
|
81 |
+
return np.expand_dims(img, axis=0)
|
82 |
|
83 |
+
# Make a prediction
|
84 |
+
image_path = "path/to/your/image.jpg"
|
85 |
+
input_image = preprocess_image(image_path)
|
86 |
+
prediction = model.predict(input_image)
|
87 |
|
88 |
+
print("Prediction:", prediction)
|