adi2606 commited on
Commit
b1c4512
Β·
verified Β·
1 Parent(s): 8a0f7dd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +98 -3
README.md CHANGED
@@ -1,3 +1,98 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ ---
4
+
5
+ # 🧠 `qwen2.5-md-finetuned`
6
+
7
+ ## Model Overview
8
+
9
+ `qwen2.5-md-finetuned` is a fine-tuned version of the **Qwen2.5-Medium** model, optimized for improved performance on domain-specific or task-specific data. This model leverages the powerful multilingual and multitask capabilities of the base Qwen2.5 architecture and is adapted further using Low-Rank Adaptation (LoRA) techniques for efficient fine-tuning.
10
+
11
+ > βœ… **Base Model:** [Qwen2.5-Medium](https://huggingface.co/Qwen/Qwen2.5-Medium)
12
+ > πŸ› οΈ **Fine-Tuned By:** [adi2606](https://huggingface.co/adi2606)
13
+ > πŸ“œ **License:** MIT
14
+ > 🧱 **Adapter Format:** `adapter_model.safetensors` (LoRA)
15
+
16
+ ---
17
+
18
+ ## πŸ“Œ Use Cases
19
+
20
+ This model is best suited for:
21
+
22
+ * Custom conversational agents
23
+ * Code or documentation assistants
24
+ * Knowledge-based QA systems
25
+ * Any application benefiting from Qwen2.5’s capabilities but requiring domain-specific fine-tuning
26
+
27
+ ---
28
+
29
+ ## πŸ”§ Fine-Tuning Details
30
+
31
+ * **Technique:** Parameter-efficient fine-tuning using LoRA
32
+ * **Adapter Config:** See `adapter_config.json`
33
+ * **Tokenizer:** Includes full tokenizer configuration (`tokenizer_config.json`, `vocab.json`, `merges.txt`)
34
+ * **Additional Tokens:** `added_tokens.json` and `special_tokens_map.json` for enhanced compatibility with downstream applications
35
+
36
+ ---
37
+
38
+ ## πŸ’Ύ Files
39
+
40
+ | Filename | Description |
41
+ | --------------------------- | ------------------------------------ |
42
+ | `adapter_model.safetensors` | LoRA adapter weights |
43
+ | `adapter_config.json` | Adapter configuration for inference |
44
+ | `tokenizer_config.json` | Tokenizer configuration |
45
+ | `tokenizer.json` | Pre-tokenized vocabulary |
46
+ | `vocab.json` | Vocabulary JSON |
47
+ | `merges.txt` | Merge rules for BPE tokenizer |
48
+ | `special_tokens_map.json` | Special tokens mapping |
49
+ | `added_tokens.json` | Custom added tokens |
50
+ | `chat_template.jinja` | Custom chat template (if applicable) |
51
+
52
+ ---
53
+
54
+ ## βœ… How to Use
55
+
56
+ You can load this adapter with the base Qwen2.5-Medium model using `peft`:
57
+
58
+ ```python
59
+ from peft import PeftModel, PeftConfig
60
+ from transformers import AutoModelForCausalLM, AutoTokenizer
61
+
62
+ base_model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-Medium", device_map="auto", trust_remote_code=True)
63
+ tokenizer = AutoTokenizer.from_pretrained("adi2606/qwen2.5-md-finetuned", trust_remote_code=True)
64
+ model = PeftModel.from_pretrained(base_model, "adi2606/qwen2.5-md-finetuned")
65
+ ```
66
+
67
+ ---
68
+
69
+ ## πŸ“ˆ Performance
70
+
71
+ > (Optional section)
72
+ > If you have evaluation metrics or benchmark results, they can be added here. Example:
73
+
74
+ * Domain accuracy: 89.3%
75
+ * BLEU/ROUGE/F1 scores if applicable
76
+
77
+ ---
78
+
79
+ ## πŸ“š Citation
80
+
81
+ If you use this model in your work, please consider citing it:
82
+
83
+ ```bibtex
84
+ @misc{adi2606qwen25md,
85
+ author = {adi2606},
86
+ title = {qwen2.5-md-finetuned},
87
+ year = {2025},
88
+ publisher = {Hugging Face},
89
+ howpublished = {\url{https://huggingface.co/adi2606/qwen2.5-md-finetuned}},
90
+ }
91
+ ```
92
+
93
+ ---
94
+
95
+ ## 🀝 Contributions
96
+
97
+ If you find issues or would like to contribute improvements to the model or tokenizer, feel free to open a pull request or discussion on the [model repository](https://huggingface.co/adi2606/qwen2.5-md-finetuned).
98
+