adejumobi commited on
Commit
15ea884
·
verified ·
1 Parent(s): 0a61b62

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,454 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: []
3
+ library_name: sentence-transformers
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - generated_from_trainer
9
+ - dataset_size:5019
10
+ - loss:TripletLoss
11
+ base_model: Davlan/bert-base-multilingual-cased-finetuned-yoruba
12
+ datasets: []
13
+ metrics:
14
+ - cosine_accuracy
15
+ - dot_accuracy
16
+ - manhattan_accuracy
17
+ - euclidean_accuracy
18
+ - max_accuracy
19
+ widget:
20
+ - source_sentence: Bawo ni eniyan lasan ṣe le ṣe agbaye ni aye ti o dara julọ?
21
+ sentences:
22
+ - Ewo ni fiimu ti o dara julọ ti agbaye?
23
+ - Bawo ni a ṣe le ṣe agbaye ni aye ti o dara julọ fun gbogbo ati fun iran iwaju
24
+ lati wa?
25
+ - Njẹ aiye yii dara julọ tabi buru?
26
+ - source_sentence: Ni Pokemon ati tẹmpili ti okun, kilode ti o yanilenu Manicy?
27
+ sentences:
28
+ - Kini idi ti Manafy ọmọ-ọwọ ni Pokémon ger ati tẹmpili ti okun?
29
+ - Bawo ni awọn ibeere mi ṣe wa nigbagbogbo nigbagbogbo lori Quora?
30
+ - Ṣe "Pokémon ti o wuyi ati tẹmpili ti Okun" ka akọku?
31
+ - source_sentence: Kini itumo igbesi aye yii?
32
+ sentences:
33
+ - Kini "Gbe igbesi aye rẹ" tumọ si?
34
+ - Kini o ro pe o jẹ itumọ ti igbesi aye?
35
+ - Nitorinaa bawo ni MO ṣe le gba meth lati fulu jade ninu ara ni awọn wakati 2 ṣaaju
36
+ idanwo togbo kan?
37
+ - source_sentence: Nibo ni MO le gba ọpọlọpọ awọn aso deede, awọn aṣọ alekun & awọn
38
+ aṣọ irọlẹ ni goolu ni eti okun?
39
+ sentences:
40
+ - Nibo ni MO le gba ọpọlọpọ awọn awọ ati titobi fun awọn aṣọ awọn alagbaje ni Gold
41
+ Coast?
42
+ - Kini yoo ṣẹlẹ ti o ba jẹ ki o dina nkan bi Facebook tabi Google ni isansa ti iṣan
43
+ neta?
44
+ - Nibo ni MO le gba ikojọpọ ti o lẹwa fun awọn aṣọ igbeyawo ni Sydney?
45
+ - source_sentence: Kini o yẹ ki Ilu India ṣe lori ikọlu UI?
46
+ sentences:
47
+ - Bawo ni MO ṣe sọ Gẹẹsi leta ni ifọrọwanilẹnuwo kan?
48
+ - Lẹhin gbogbo họọsi ti media media ti ṣẹda awọn ikọlu URI Wip, kii yoo jẹ ohun
49
+ itiju fun India ti ko ba kọlu Pakistan?
50
+ - Bawo ni India le dahun si ikọlu ẹru UI?
51
+ pipeline_tag: sentence-similarity
52
+ model-index:
53
+ - name: SentenceTransformer based on Davlan/bert-base-multilingual-cased-finetuned-yoruba
54
+ results:
55
+ - task:
56
+ type: triplet
57
+ name: Triplet
58
+ dataset:
59
+ name: Unknown
60
+ type: unknown
61
+ metrics:
62
+ - type: cosine_accuracy
63
+ value: 0.865
64
+ name: Cosine Accuracy
65
+ - type: dot_accuracy
66
+ value: 0.135
67
+ name: Dot Accuracy
68
+ - type: manhattan_accuracy
69
+ value: 0.868
70
+ name: Manhattan Accuracy
71
+ - type: euclidean_accuracy
72
+ value: 0.868
73
+ name: Euclidean Accuracy
74
+ - type: max_accuracy
75
+ value: 0.868
76
+ name: Max Accuracy
77
+ ---
78
+
79
+ # SentenceTransformer based on Davlan/bert-base-multilingual-cased-finetuned-yoruba
80
+
81
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Davlan/bert-base-multilingual-cased-finetuned-yoruba](https://huggingface.co/Davlan/bert-base-multilingual-cased-finetuned-yoruba). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
82
+
83
+ ## Model Details
84
+
85
+ ### Model Description
86
+ - **Model Type:** Sentence Transformer
87
+ - **Base model:** [Davlan/bert-base-multilingual-cased-finetuned-yoruba](https://huggingface.co/Davlan/bert-base-multilingual-cased-finetuned-yoruba) <!-- at revision 000f80b4509f73bca9a33f9db0573d6f67396a12 -->
88
+ - **Maximum Sequence Length:** 512 tokens
89
+ - **Output Dimensionality:** 768 tokens
90
+ - **Similarity Function:** Cosine Similarity
91
+ <!-- - **Training Dataset:** Unknown -->
92
+ <!-- - **Language:** Unknown -->
93
+ <!-- - **License:** Unknown -->
94
+
95
+ ### Model Sources
96
+
97
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
98
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
99
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
100
+
101
+ ### Full Model Architecture
102
+
103
+ ```
104
+ SentenceTransformer(
105
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
106
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
107
+ )
108
+ ```
109
+
110
+ ## Usage
111
+
112
+ ### Direct Usage (Sentence Transformers)
113
+
114
+ First install the Sentence Transformers library:
115
+
116
+ ```bash
117
+ pip install -U sentence-transformers
118
+ ```
119
+
120
+ Then you can load this model and run inference.
121
+ ```python
122
+ from sentence_transformers import SentenceTransformer
123
+
124
+ # Download from the 🤗 Hub
125
+ model = SentenceTransformer("adejumobi/bert-base-multilingual-cased-finetuned-yoruba-IR")
126
+ # Run inference
127
+ sentences = [
128
+ 'Kini o yẹ ki Ilu India ṣe lori ikọlu UI?',
129
+ 'Bawo ni India le dahun si ikọlu ẹru UI?',
130
+ 'Lẹhin gbogbo họọsi ti media media ti ṣẹda awọn ikọlu URI Wip, kii yoo jẹ ohun itiju fun India ti ko ba kọlu Pakistan?',
131
+ ]
132
+ embeddings = model.encode(sentences)
133
+ print(embeddings.shape)
134
+ # [3, 768]
135
+
136
+ # Get the similarity scores for the embeddings
137
+ similarities = model.similarity(embeddings, embeddings)
138
+ print(similarities.shape)
139
+ # [3, 3]
140
+ ```
141
+
142
+ <!--
143
+ ### Direct Usage (Transformers)
144
+
145
+ <details><summary>Click to see the direct usage in Transformers</summary>
146
+
147
+ </details>
148
+ -->
149
+
150
+ <!--
151
+ ### Downstream Usage (Sentence Transformers)
152
+
153
+ You can finetune this model on your own dataset.
154
+
155
+ <details><summary>Click to expand</summary>
156
+
157
+ </details>
158
+ -->
159
+
160
+ <!--
161
+ ### Out-of-Scope Use
162
+
163
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
164
+ -->
165
+
166
+ ## Evaluation
167
+
168
+ ### Metrics
169
+
170
+ #### Triplet
171
+
172
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
173
+
174
+ | Metric | Value |
175
+ |:--------------------|:----------|
176
+ | **cosine_accuracy** | **0.865** |
177
+ | dot_accuracy | 0.135 |
178
+ | manhattan_accuracy | 0.868 |
179
+ | euclidean_accuracy | 0.868 |
180
+ | max_accuracy | 0.868 |
181
+
182
+ <!--
183
+ ## Bias, Risks and Limitations
184
+
185
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
186
+ -->
187
+
188
+ <!--
189
+ ### Recommendations
190
+
191
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
192
+ -->
193
+
194
+ ## Training Details
195
+
196
+ ### Training Dataset
197
+
198
+ #### Unnamed Dataset
199
+
200
+
201
+ * Size: 5,019 training samples
202
+ * Columns: <code>query</code>, <code>pos</code>, and <code>neg</code>
203
+ * Approximate statistics based on the first 1000 samples:
204
+ | | query | pos | neg |
205
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
206
+ | type | string | string | string |
207
+ | details | <ul><li>min: 5 tokens</li><li>mean: 24.62 tokens</li><li>max: 74 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 24.14 tokens</li><li>max: 79 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 25.71 tokens</li><li>max: 98 tokens</li></ul> |
208
+ * Samples:
209
+ | query | pos | neg |
210
+ |:-------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------|
211
+ | <code>Kini idi ti Ilu India ṣe a ko ni ọkan lori ijiroro oloselu kan bi ni AMẸRIKA?</code> | <code>Kini idi ti a ko le ni ijiroro gbangba laarin awọn oloselu ni India bi ọkan ninu wa?</code> | <code>Njẹ eniyan le da quo duro de India Pakistan ariyanjiyan?A ni aisan ati ti o ri eyi lojoojumọ ni olopo?</code> |
212
+ | <code>Kini OnePlus Ọkan?</code> | <code>Bawo ni OnePlus kan?</code> | <code>Kini idi ti OnePlus Ọkan dara?</code> |
213
+ | <code>Ṣe ọkan wa ṣe iṣakoso awọn ẹdun wa?</code> | <code>Bawo ni ọlọgbọn ati awọn eniyan aṣeyọri ṣe ṣakoso awọn ẹdun wọn?</code> | <code>Bawo ni MO ṣe le ṣakoso awọn ẹdun mi rere fun awọn eniyan ti Mo nifẹ ṣugbọn wọn ko bikita nipa mi?</code> |
214
+ * Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
215
+ ```json
216
+ {
217
+ "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
218
+ "triplet_margin": 5
219
+ }
220
+ ```
221
+
222
+ ### Evaluation Dataset
223
+
224
+ #### Unnamed Dataset
225
+
226
+
227
+ * Size: 1,000 evaluation samples
228
+ * Columns: <code>query</code>, <code>pos</code>, and <code>neg</code>
229
+ * Approximate statistics based on the first 1000 samples:
230
+ | | query | pos | neg |
231
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
232
+ | type | string | string | string |
233
+ | details | <ul><li>min: 6 tokens</li><li>mean: 24.32 tokens</li><li>max: 94 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 24.06 tokens</li><li>max: 115 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 25.58 tokens</li><li>max: 121 tokens</li></ul> |
234
+ * Samples:
235
+ | query | pos | neg |
236
+ |:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|
237
+ | <code>Bawo ni o jẹ ọjọ ebi?</code> | <code>Bawo ni o jẹ ọsan</code> | <code>Njẹ NEBM lueMo ṣẹlẹ lati wa awọn ifiweranṣẹ ti o sọ pe o jẹ iro ati pe ko ni itter</code> |
238
+ | <code>Kini awọn ohun elo akọkọ ti kọnputa kan?</code> | <code>Kini diẹ ninu awọn ẹya akọkọ ti kọnputa kan?Awọn iṣẹ wo ni wọn nṣe iranṣẹ?</code> | <code>Kini awọn eto kọmputa?Kini awọn iṣẹ ti awọn eto kọnputa?</code> |
239
+ | <code>Ṣe o le faffiti Artists fun sokiri Graffiti ni Rockdale County, GA?</code> | <code>Ṣe o le fun awọn ojukokoro fun fun sokiri Graffiti ni Cockdale County, Georgia?</code> | <code>Kini idi ti Graffiti jẹ arufin?</code> |
240
+ * Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
241
+ ```json
242
+ {
243
+ "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
244
+ "triplet_margin": 5
245
+ }
246
+ ```
247
+
248
+ ### Training Hyperparameters
249
+ #### Non-Default Hyperparameters
250
+
251
+ - `eval_strategy`: steps
252
+ - `per_device_train_batch_size`: 12
253
+ - `per_device_eval_batch_size`: 3
254
+ - `learning_rate`: 1e-05
255
+ - `num_train_epochs`: 5
256
+ - `warmup_ratio`: 0.1
257
+ - `fp16`: True
258
+ - `batch_sampler`: no_duplicates
259
+
260
+ #### All Hyperparameters
261
+ <details><summary>Click to expand</summary>
262
+
263
+ - `overwrite_output_dir`: False
264
+ - `do_predict`: False
265
+ - `eval_strategy`: steps
266
+ - `prediction_loss_only`: True
267
+ - `per_device_train_batch_size`: 12
268
+ - `per_device_eval_batch_size`: 3
269
+ - `per_gpu_train_batch_size`: None
270
+ - `per_gpu_eval_batch_size`: None
271
+ - `gradient_accumulation_steps`: 1
272
+ - `eval_accumulation_steps`: None
273
+ - `learning_rate`: 1e-05
274
+ - `weight_decay`: 0.0
275
+ - `adam_beta1`: 0.9
276
+ - `adam_beta2`: 0.999
277
+ - `adam_epsilon`: 1e-08
278
+ - `max_grad_norm`: 1.0
279
+ - `num_train_epochs`: 5
280
+ - `max_steps`: -1
281
+ - `lr_scheduler_type`: linear
282
+ - `lr_scheduler_kwargs`: {}
283
+ - `warmup_ratio`: 0.1
284
+ - `warmup_steps`: 0
285
+ - `log_level`: passive
286
+ - `log_level_replica`: warning
287
+ - `log_on_each_node`: True
288
+ - `logging_nan_inf_filter`: True
289
+ - `save_safetensors`: True
290
+ - `save_on_each_node`: False
291
+ - `save_only_model`: False
292
+ - `restore_callback_states_from_checkpoint`: False
293
+ - `no_cuda`: False
294
+ - `use_cpu`: False
295
+ - `use_mps_device`: False
296
+ - `seed`: 42
297
+ - `data_seed`: None
298
+ - `jit_mode_eval`: False
299
+ - `use_ipex`: False
300
+ - `bf16`: False
301
+ - `fp16`: True
302
+ - `fp16_opt_level`: O1
303
+ - `half_precision_backend`: auto
304
+ - `bf16_full_eval`: False
305
+ - `fp16_full_eval`: False
306
+ - `tf32`: None
307
+ - `local_rank`: 0
308
+ - `ddp_backend`: None
309
+ - `tpu_num_cores`: None
310
+ - `tpu_metrics_debug`: False
311
+ - `debug`: []
312
+ - `dataloader_drop_last`: False
313
+ - `dataloader_num_workers`: 0
314
+ - `dataloader_prefetch_factor`: None
315
+ - `past_index`: -1
316
+ - `disable_tqdm`: False
317
+ - `remove_unused_columns`: True
318
+ - `label_names`: None
319
+ - `load_best_model_at_end`: False
320
+ - `ignore_data_skip`: False
321
+ - `fsdp`: []
322
+ - `fsdp_min_num_params`: 0
323
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
324
+ - `fsdp_transformer_layer_cls_to_wrap`: None
325
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
326
+ - `deepspeed`: None
327
+ - `label_smoothing_factor`: 0.0
328
+ - `optim`: adamw_torch
329
+ - `optim_args`: None
330
+ - `adafactor`: False
331
+ - `group_by_length`: False
332
+ - `length_column_name`: length
333
+ - `ddp_find_unused_parameters`: None
334
+ - `ddp_bucket_cap_mb`: None
335
+ - `ddp_broadcast_buffers`: False
336
+ - `dataloader_pin_memory`: True
337
+ - `dataloader_persistent_workers`: False
338
+ - `skip_memory_metrics`: True
339
+ - `use_legacy_prediction_loop`: False
340
+ - `push_to_hub`: False
341
+ - `resume_from_checkpoint`: None
342
+ - `hub_model_id`: None
343
+ - `hub_strategy`: every_save
344
+ - `hub_private_repo`: False
345
+ - `hub_always_push`: False
346
+ - `gradient_checkpointing`: False
347
+ - `gradient_checkpointing_kwargs`: None
348
+ - `include_inputs_for_metrics`: False
349
+ - `eval_do_concat_batches`: True
350
+ - `fp16_backend`: auto
351
+ - `push_to_hub_model_id`: None
352
+ - `push_to_hub_organization`: None
353
+ - `mp_parameters`:
354
+ - `auto_find_batch_size`: False
355
+ - `full_determinism`: False
356
+ - `torchdynamo`: None
357
+ - `ray_scope`: last
358
+ - `ddp_timeout`: 1800
359
+ - `torch_compile`: False
360
+ - `torch_compile_backend`: None
361
+ - `torch_compile_mode`: None
362
+ - `dispatch_batches`: None
363
+ - `split_batches`: None
364
+ - `include_tokens_per_second`: False
365
+ - `include_num_input_tokens_seen`: False
366
+ - `neftune_noise_alpha`: None
367
+ - `optim_target_modules`: None
368
+ - `batch_eval_metrics`: False
369
+ - `batch_sampler`: no_duplicates
370
+ - `multi_dataset_batch_sampler`: proportional
371
+
372
+ </details>
373
+
374
+ ### Training Logs
375
+ | Epoch | Step | Training Loss | loss | cosine_accuracy |
376
+ |:------:|:----:|:-------------:|:------:|:---------------:|
377
+ | 0 | 0 | - | - | 0.827 |
378
+ | 0.2387 | 100 | 4.247 | 3.6056 | 0.815 |
379
+ | 0.4773 | 200 | 3.3576 | 2.7548 | 0.809 |
380
+ | 0.7160 | 300 | 2.931 | 2.3805 | 0.843 |
381
+ | 0.9547 | 400 | 2.4476 | 2.1895 | 0.858 |
382
+ | 1.1933 | 500 | 2.5839 | 2.1148 | 0.854 |
383
+ | 1.4320 | 600 | 2.0645 | 2.0497 | 0.855 |
384
+ | 1.6706 | 700 | 1.8386 | 2.0328 | 0.847 |
385
+ | 1.9093 | 800 | 1.5527 | 1.9380 | 0.857 |
386
+ | 2.1480 | 900 | 1.7298 | 1.8999 | 0.861 |
387
+ | 2.3866 | 1000 | 1.4375 | 1.8744 | 0.855 |
388
+ | 2.6253 | 1100 | 1.1605 | 1.8761 | 0.861 |
389
+ | 2.8640 | 1200 | 1.0601 | 1.8658 | 0.862 |
390
+ | 3.1026 | 1300 | 1.1019 | 1.8181 | 0.861 |
391
+ | 3.3413 | 1400 | 1.052 | 1.8088 | 0.854 |
392
+ | 3.5800 | 1500 | 0.8807 | 1.7937 | 0.862 |
393
+ | 3.8186 | 1600 | 0.7877 | 1.7963 | 0.862 |
394
+ | 4.0573 | 1700 | 0.7613 | 1.7869 | 0.868 |
395
+ | 4.2959 | 1800 | 0.8018 | 1.7696 | 0.867 |
396
+ | 4.5346 | 1900 | 0.6717 | 1.7815 | 0.865 |
397
+ | 4.7733 | 2000 | 0.6603 | 1.7776 | 0.865 |
398
+
399
+
400
+ ### Framework Versions
401
+ - Python: 3.10.13
402
+ - Sentence Transformers: 3.0.1
403
+ - Transformers: 4.41.2
404
+ - PyTorch: 2.1.2
405
+ - Accelerate: 0.31.0
406
+ - Datasets: 2.19.2
407
+ - Tokenizers: 0.19.1
408
+
409
+ ## Citation
410
+
411
+ ### BibTeX
412
+
413
+ #### Sentence Transformers
414
+ ```bibtex
415
+ @inproceedings{reimers-2019-sentence-bert,
416
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
417
+ author = "Reimers, Nils and Gurevych, Iryna",
418
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
419
+ month = "11",
420
+ year = "2019",
421
+ publisher = "Association for Computational Linguistics",
422
+ url = "https://arxiv.org/abs/1908.10084",
423
+ }
424
+ ```
425
+
426
+ #### TripletLoss
427
+ ```bibtex
428
+ @misc{hermans2017defense,
429
+ title={In Defense of the Triplet Loss for Person Re-Identification},
430
+ author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
431
+ year={2017},
432
+ eprint={1703.07737},
433
+ archivePrefix={arXiv},
434
+ primaryClass={cs.CV}
435
+ }
436
+ ```
437
+
438
+ <!--
439
+ ## Glossary
440
+
441
+ *Clearly define terms in order to be accessible across audiences.*
442
+ -->
443
+
444
+ <!--
445
+ ## Model Card Authors
446
+
447
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
448
+ -->
449
+
450
+ <!--
451
+ ## Model Card Contact
452
+
453
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
454
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Davlan/bert-base-multilingual-cased-finetuned-yoruba",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "directionality": "bidi",
9
+ "gradient_checkpointing": false,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-12,
16
+ "max_position_embeddings": 512,
17
+ "model_type": "bert",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 12,
20
+ "pad_token_id": 0,
21
+ "pooler_fc_size": 768,
22
+ "pooler_num_attention_heads": 12,
23
+ "pooler_num_fc_layers": 3,
24
+ "pooler_size_per_head": 128,
25
+ "pooler_type": "first_token_transform",
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.41.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 119547
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.1.2"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b10709d4986b096d316a7b1f87278239c5034611c0a007dc5bc32e6d3b9ae5ff
3
+ size 711436136
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": false,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff