--- library_name: peft tags: - generated_from_trainer base_model: GroNLP/hateBERT metrics: - accuracy model-index: - name: trainer results: [] --- # trainer This model is a fine-tuned version of [GroNLP/hateBERT](https://huggingface.co/GroNLP/hateBERT) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5228 - Accuracy: {'accuracy': 0.7989466452942523} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 20 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------------------------------:| | 0.4295 | 1.0 | 2217 | 0.6655 | {'accuracy': 0.7348294023356996} | | 0.3365 | 2.0 | 4434 | 0.5471 | {'accuracy': 0.7874971376230822} | | 0.2882 | 3.0 | 6651 | 0.5133 | {'accuracy': 0.8014655369819098} | | 0.2574 | 4.0 | 8868 | 0.5228 | {'accuracy': 0.7989466452942523} | ### Framework versions - PEFT 0.10.0 - Transformers 4.39.3 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2