File size: 1,762 Bytes
598e5a6
f1b5055
598e5a6
 
5be33f8
598e5a6
 
 
 
 
 
 
 
 
 
 
 
5be33f8
598e5a6
5be33f8
 
598e5a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5be33f8
 
598e5a6
5be33f8
 
598e5a6
 
f1b5055
598e5a6
 
 
5be33f8
 
 
 
 
 
598e5a6
 
 
 
f1b5055
5be33f8
 
598e5a6
f1b5055
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
library_name: peft
tags:
- generated_from_trainer
base_model: GroNLP/hateBERT
metrics:
- accuracy
model-index:
- name: trainer
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# trainer

This model is a fine-tuned version of [GroNLP/hateBERT](https://huggingface.co/GroNLP/hateBERT) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5228
- Accuracy: {'accuracy': 0.7989466452942523}

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 20
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy                         |
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------:|
| 0.4295        | 1.0   | 2217 | 0.6655          | {'accuracy': 0.7348294023356996} |
| 0.3365        | 2.0   | 4434 | 0.5471          | {'accuracy': 0.7874971376230822} |
| 0.2882        | 3.0   | 6651 | 0.5133          | {'accuracy': 0.8014655369819098} |
| 0.2574        | 4.0   | 8868 | 0.5228          | {'accuracy': 0.7989466452942523} |


### Framework versions

- PEFT 0.10.0
- Transformers 4.39.3
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2