--- license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: 20240320103638_slow_musk results: [] --- # 20240320103638_slow_musk This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0264 - Precision: 0.9792 - Recall: 0.9784 - F1: 0.9788 - Accuracy: 0.9892 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 69 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 350 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0749 | 0.09 | 300 | 0.0578 | 0.9604 | 0.9502 | 0.9553 | 0.9771 | | 0.0837 | 0.17 | 600 | 0.0642 | 0.9513 | 0.9529 | 0.9521 | 0.9751 | | 0.0764 | 0.26 | 900 | 0.0592 | 0.9553 | 0.9566 | 0.9559 | 0.9771 | | 0.0667 | 0.34 | 1200 | 0.0524 | 0.9614 | 0.9606 | 0.9610 | 0.9796 | | 0.0603 | 0.43 | 1500 | 0.0477 | 0.9634 | 0.9641 | 0.9637 | 0.9811 | | 0.0542 | 0.51 | 1800 | 0.0422 | 0.9686 | 0.9674 | 0.9680 | 0.9836 | | 0.048 | 0.6 | 2100 | 0.0379 | 0.9703 | 0.9708 | 0.9705 | 0.9851 | | 0.0433 | 0.68 | 2400 | 0.0343 | 0.9728 | 0.9749 | 0.9738 | 0.9864 | | 0.0387 | 0.77 | 2700 | 0.0316 | 0.9751 | 0.9749 | 0.9750 | 0.9872 | | 0.035 | 0.85 | 3000 | 0.0288 | 0.9766 | 0.9781 | 0.9773 | 0.9883 | | 0.0328 | 0.94 | 3300 | 0.0264 | 0.9792 | 0.9784 | 0.9788 | 0.9892 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.0a0+6a974be - Datasets 2.18.0 - Tokenizers 0.15.2