--- library_name: transformers license: other base_model: Qwen/Qwen2.5-14B-Instruct tags: - llama-factory - full - generated_from_trainer model-index: - name: sft results: [] --- # sft This model is a fine-tuned version of [Qwen/Qwen2.5-14B-Instruct](https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) on the glaive_toolcall_100k and the bespoke_reasoning_17k datasets. It achieves the following results on the evaluation set: - Loss: 0.3492 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 7 - gradient_accumulation_steps: 2 - total_train_batch_size: 14 - total_eval_batch_size: 7 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.4468 | 0.2307 | 500 | 0.3987 | | 0.4457 | 0.4614 | 1000 | 0.3861 | | 0.4197 | 0.6920 | 1500 | 0.3745 | | 0.4264 | 0.9227 | 2000 | 0.3640 | | 0.3188 | 1.1532 | 2500 | 0.3638 | | 0.2938 | 1.3839 | 3000 | 0.3572 | | 0.2891 | 1.6145 | 3500 | 0.3523 | | 0.3013 | 1.8452 | 4000 | 0.3492 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0