acrastt commited on
Commit
c8f62a1
1 Parent(s): 6eaf910

Upload 8 files

Browse files
README.md CHANGED
@@ -1,3 +1,220 @@
1
  ---
2
- license: apache-2.0
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: peft
3
+ base_model: mistralai/Mistral-7B-v0.1
4
  ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ## Training procedure
203
+
204
+
205
+ The following `bitsandbytes` quantization config was used during training:
206
+ - quant_method: bitsandbytes
207
+ - load_in_8bit: True
208
+ - load_in_4bit: False
209
+ - llm_int8_threshold: 6.0
210
+ - llm_int8_skip_modules: None
211
+ - llm_int8_enable_fp32_cpu_offload: False
212
+ - llm_int8_has_fp16_weight: False
213
+ - bnb_4bit_quant_type: fp4
214
+ - bnb_4bit_use_double_quant: False
215
+ - bnb_4bit_compute_dtype: float32
216
+
217
+ ### Framework versions
218
+
219
+
220
+ - PEFT 0.6.0
adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-v0.1",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 16,
12
+ "lora_dropout": 0.8,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 32,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "up_proj",
20
+ "gate_proj",
21
+ "o_proj",
22
+ "down_proj",
23
+ "q_proj",
24
+ "k_proj",
25
+ "v_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2de6d2e236f495fca0d167075fb88bad181af6671ed843057bdc70b1b934257
3
+ size 335604696
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a101ca94bfdcd83f449a829ad9b3b45e88ac7b76862d52e2c7f0a2be8191f4aa
3
+ size 168624735
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f70587b635f67bcf3147c2f1366d716c9547d1e551565af06d2cb77235c23324
3
+ size 14575
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a96b935a7dd4194ff9e77e9b75b7462121105ee680aff83805f748b78c6c7f4
3
+ size 627
trainer_state.json ADDED
@@ -0,0 +1,2857 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.9783549783549783,
5
+ "eval_steps": 58,
6
+ "global_step": 462,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 2e-05,
14
+ "loss": 1.2676,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.0,
19
+ "eval_loss": 1.2198331356048584,
20
+ "eval_runtime": 81.1297,
21
+ "eval_samples_per_second": 0.641,
22
+ "eval_steps_per_second": 0.32,
23
+ "step": 1
24
+ },
25
+ {
26
+ "epoch": 0.01,
27
+ "learning_rate": 4e-05,
28
+ "loss": 1.2193,
29
+ "step": 2
30
+ },
31
+ {
32
+ "epoch": 0.01,
33
+ "learning_rate": 6e-05,
34
+ "loss": 1.3298,
35
+ "step": 3
36
+ },
37
+ {
38
+ "epoch": 0.02,
39
+ "learning_rate": 8e-05,
40
+ "loss": 1.2061,
41
+ "step": 4
42
+ },
43
+ {
44
+ "epoch": 0.02,
45
+ "learning_rate": 0.0001,
46
+ "loss": 1.3527,
47
+ "step": 5
48
+ },
49
+ {
50
+ "epoch": 0.03,
51
+ "learning_rate": 0.00012,
52
+ "loss": 1.252,
53
+ "step": 6
54
+ },
55
+ {
56
+ "epoch": 0.03,
57
+ "learning_rate": 0.00014,
58
+ "loss": 1.1741,
59
+ "step": 7
60
+ },
61
+ {
62
+ "epoch": 0.03,
63
+ "learning_rate": 0.00016,
64
+ "loss": 1.1895,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.04,
69
+ "learning_rate": 0.00018,
70
+ "loss": 1.2515,
71
+ "step": 9
72
+ },
73
+ {
74
+ "epoch": 0.04,
75
+ "learning_rate": 0.0002,
76
+ "loss": 1.1743,
77
+ "step": 10
78
+ },
79
+ {
80
+ "epoch": 0.05,
81
+ "learning_rate": 0.00019999990671452868,
82
+ "loss": 1.1574,
83
+ "step": 11
84
+ },
85
+ {
86
+ "epoch": 0.05,
87
+ "learning_rate": 0.00019999962685828874,
88
+ "loss": 1.1273,
89
+ "step": 12
90
+ },
91
+ {
92
+ "epoch": 0.06,
93
+ "learning_rate": 0.0001999991604318023,
94
+ "loss": 1.2415,
95
+ "step": 13
96
+ },
97
+ {
98
+ "epoch": 0.06,
99
+ "learning_rate": 0.00019999850743593963,
100
+ "loss": 1.0545,
101
+ "step": 14
102
+ },
103
+ {
104
+ "epoch": 0.06,
105
+ "learning_rate": 0.00019999766787191895,
106
+ "loss": 1.2343,
107
+ "step": 15
108
+ },
109
+ {
110
+ "epoch": 0.07,
111
+ "learning_rate": 0.0001999966417413067,
112
+ "loss": 1.191,
113
+ "step": 16
114
+ },
115
+ {
116
+ "epoch": 0.07,
117
+ "learning_rate": 0.00019999542904601734,
118
+ "loss": 1.1895,
119
+ "step": 17
120
+ },
121
+ {
122
+ "epoch": 0.08,
123
+ "learning_rate": 0.0001999940297883134,
124
+ "loss": 1.2189,
125
+ "step": 18
126
+ },
127
+ {
128
+ "epoch": 0.08,
129
+ "learning_rate": 0.00019999244397080545,
130
+ "loss": 1.0745,
131
+ "step": 19
132
+ },
133
+ {
134
+ "epoch": 0.09,
135
+ "learning_rate": 0.0001999906715964522,
136
+ "loss": 1.0772,
137
+ "step": 20
138
+ },
139
+ {
140
+ "epoch": 0.09,
141
+ "learning_rate": 0.0001999887126685604,
142
+ "loss": 1.2113,
143
+ "step": 21
144
+ },
145
+ {
146
+ "epoch": 0.1,
147
+ "learning_rate": 0.00019998656719078482,
148
+ "loss": 1.1121,
149
+ "step": 22
150
+ },
151
+ {
152
+ "epoch": 0.1,
153
+ "learning_rate": 0.00019998423516712829,
154
+ "loss": 1.1874,
155
+ "step": 23
156
+ },
157
+ {
158
+ "epoch": 0.1,
159
+ "learning_rate": 0.00019998171660194172,
160
+ "loss": 1.1595,
161
+ "step": 24
162
+ },
163
+ {
164
+ "epoch": 0.11,
165
+ "learning_rate": 0.00019997901149992398,
166
+ "loss": 1.1307,
167
+ "step": 25
168
+ },
169
+ {
170
+ "epoch": 0.11,
171
+ "learning_rate": 0.00019997611986612203,
172
+ "loss": 1.0118,
173
+ "step": 26
174
+ },
175
+ {
176
+ "epoch": 0.12,
177
+ "learning_rate": 0.00019997304170593083,
178
+ "loss": 1.0629,
179
+ "step": 27
180
+ },
181
+ {
182
+ "epoch": 0.12,
183
+ "learning_rate": 0.0001999697770250933,
184
+ "loss": 1.1903,
185
+ "step": 28
186
+ },
187
+ {
188
+ "epoch": 0.13,
189
+ "learning_rate": 0.0001999663258297004,
190
+ "loss": 1.1613,
191
+ "step": 29
192
+ },
193
+ {
194
+ "epoch": 0.13,
195
+ "learning_rate": 0.00019996268812619107,
196
+ "loss": 1.1202,
197
+ "step": 30
198
+ },
199
+ {
200
+ "epoch": 0.13,
201
+ "learning_rate": 0.00019995886392135218,
202
+ "loss": 1.1014,
203
+ "step": 31
204
+ },
205
+ {
206
+ "epoch": 0.14,
207
+ "learning_rate": 0.00019995485322231863,
208
+ "loss": 1.1386,
209
+ "step": 32
210
+ },
211
+ {
212
+ "epoch": 0.14,
213
+ "learning_rate": 0.00019995065603657316,
214
+ "loss": 1.111,
215
+ "step": 33
216
+ },
217
+ {
218
+ "epoch": 0.15,
219
+ "learning_rate": 0.00019994627237194653,
220
+ "loss": 0.966,
221
+ "step": 34
222
+ },
223
+ {
224
+ "epoch": 0.15,
225
+ "learning_rate": 0.0001999417022366174,
226
+ "loss": 1.0894,
227
+ "step": 35
228
+ },
229
+ {
230
+ "epoch": 0.16,
231
+ "learning_rate": 0.0001999369456391123,
232
+ "loss": 1.1174,
233
+ "step": 36
234
+ },
235
+ {
236
+ "epoch": 0.16,
237
+ "learning_rate": 0.00019993200258830568,
238
+ "loss": 1.1523,
239
+ "step": 37
240
+ },
241
+ {
242
+ "epoch": 0.16,
243
+ "learning_rate": 0.00019992687309341976,
244
+ "loss": 1.086,
245
+ "step": 38
246
+ },
247
+ {
248
+ "epoch": 0.17,
249
+ "learning_rate": 0.00019992155716402475,
250
+ "loss": 1.1731,
251
+ "step": 39
252
+ },
253
+ {
254
+ "epoch": 0.17,
255
+ "learning_rate": 0.00019991605481003866,
256
+ "loss": 1.0819,
257
+ "step": 40
258
+ },
259
+ {
260
+ "epoch": 0.18,
261
+ "learning_rate": 0.00019991036604172723,
262
+ "loss": 1.1908,
263
+ "step": 41
264
+ },
265
+ {
266
+ "epoch": 0.18,
267
+ "learning_rate": 0.00019990449086970403,
268
+ "loss": 1.137,
269
+ "step": 42
270
+ },
271
+ {
272
+ "epoch": 0.19,
273
+ "learning_rate": 0.0001998984293049305,
274
+ "loss": 1.0934,
275
+ "step": 43
276
+ },
277
+ {
278
+ "epoch": 0.19,
279
+ "learning_rate": 0.00019989218135871571,
280
+ "loss": 1.1328,
281
+ "step": 44
282
+ },
283
+ {
284
+ "epoch": 0.19,
285
+ "learning_rate": 0.0001998857470427165,
286
+ "loss": 1.0891,
287
+ "step": 45
288
+ },
289
+ {
290
+ "epoch": 0.2,
291
+ "learning_rate": 0.00019987912636893745,
292
+ "loss": 1.2444,
293
+ "step": 46
294
+ },
295
+ {
296
+ "epoch": 0.2,
297
+ "learning_rate": 0.0001998723193497308,
298
+ "loss": 1.1038,
299
+ "step": 47
300
+ },
301
+ {
302
+ "epoch": 0.21,
303
+ "learning_rate": 0.00019986532599779652,
304
+ "loss": 1.1226,
305
+ "step": 48
306
+ },
307
+ {
308
+ "epoch": 0.21,
309
+ "learning_rate": 0.00019985814632618212,
310
+ "loss": 1.1638,
311
+ "step": 49
312
+ },
313
+ {
314
+ "epoch": 0.22,
315
+ "learning_rate": 0.0001998507803482828,
316
+ "loss": 1.0305,
317
+ "step": 50
318
+ },
319
+ {
320
+ "epoch": 0.22,
321
+ "learning_rate": 0.00019984322807784134,
322
+ "loss": 1.0989,
323
+ "step": 51
324
+ },
325
+ {
326
+ "epoch": 0.23,
327
+ "learning_rate": 0.00019983548952894807,
328
+ "loss": 1.0603,
329
+ "step": 52
330
+ },
331
+ {
332
+ "epoch": 0.23,
333
+ "learning_rate": 0.0001998275647160409,
334
+ "loss": 1.0908,
335
+ "step": 53
336
+ },
337
+ {
338
+ "epoch": 0.23,
339
+ "learning_rate": 0.00019981945365390516,
340
+ "loss": 1.0206,
341
+ "step": 54
342
+ },
343
+ {
344
+ "epoch": 0.24,
345
+ "learning_rate": 0.0001998111563576738,
346
+ "loss": 1.0747,
347
+ "step": 55
348
+ },
349
+ {
350
+ "epoch": 0.24,
351
+ "learning_rate": 0.00019980267284282717,
352
+ "loss": 0.9588,
353
+ "step": 56
354
+ },
355
+ {
356
+ "epoch": 0.25,
357
+ "learning_rate": 0.000199794003125193,
358
+ "loss": 1.045,
359
+ "step": 57
360
+ },
361
+ {
362
+ "epoch": 0.25,
363
+ "learning_rate": 0.00019978514722094647,
364
+ "loss": 1.0878,
365
+ "step": 58
366
+ },
367
+ {
368
+ "epoch": 0.25,
369
+ "eval_loss": 1.056009292602539,
370
+ "eval_runtime": 80.995,
371
+ "eval_samples_per_second": 0.642,
372
+ "eval_steps_per_second": 0.321,
373
+ "step": 58
374
+ },
375
+ {
376
+ "epoch": 0.26,
377
+ "learning_rate": 0.00019977610514661018,
378
+ "loss": 1.1608,
379
+ "step": 59
380
+ },
381
+ {
382
+ "epoch": 0.26,
383
+ "learning_rate": 0.00019976687691905393,
384
+ "loss": 1.1301,
385
+ "step": 60
386
+ },
387
+ {
388
+ "epoch": 0.26,
389
+ "learning_rate": 0.00019975746255549497,
390
+ "loss": 1.2051,
391
+ "step": 61
392
+ },
393
+ {
394
+ "epoch": 0.27,
395
+ "learning_rate": 0.00019974786207349775,
396
+ "loss": 1.2455,
397
+ "step": 62
398
+ },
399
+ {
400
+ "epoch": 0.27,
401
+ "learning_rate": 0.00019973807549097396,
402
+ "loss": 1.095,
403
+ "step": 63
404
+ },
405
+ {
406
+ "epoch": 0.28,
407
+ "learning_rate": 0.00019972810282618256,
408
+ "loss": 1.0158,
409
+ "step": 64
410
+ },
411
+ {
412
+ "epoch": 0.28,
413
+ "learning_rate": 0.00019971794409772963,
414
+ "loss": 1.1211,
415
+ "step": 65
416
+ },
417
+ {
418
+ "epoch": 0.29,
419
+ "learning_rate": 0.00019970759932456836,
420
+ "loss": 1.1543,
421
+ "step": 66
422
+ },
423
+ {
424
+ "epoch": 0.29,
425
+ "learning_rate": 0.00019969706852599915,
426
+ "loss": 1.0695,
427
+ "step": 67
428
+ },
429
+ {
430
+ "epoch": 0.29,
431
+ "learning_rate": 0.0001996863517216694,
432
+ "loss": 1.0116,
433
+ "step": 68
434
+ },
435
+ {
436
+ "epoch": 0.3,
437
+ "learning_rate": 0.00019967544893157352,
438
+ "loss": 1.0067,
439
+ "step": 69
440
+ },
441
+ {
442
+ "epoch": 0.3,
443
+ "learning_rate": 0.00019966436017605297,
444
+ "loss": 1.0305,
445
+ "step": 70
446
+ },
447
+ {
448
+ "epoch": 0.31,
449
+ "learning_rate": 0.00019965308547579614,
450
+ "loss": 1.1282,
451
+ "step": 71
452
+ },
453
+ {
454
+ "epoch": 0.31,
455
+ "learning_rate": 0.00019964162485183837,
456
+ "loss": 1.119,
457
+ "step": 72
458
+ },
459
+ {
460
+ "epoch": 0.32,
461
+ "learning_rate": 0.00019962997832556183,
462
+ "loss": 1.012,
463
+ "step": 73
464
+ },
465
+ {
466
+ "epoch": 0.32,
467
+ "learning_rate": 0.00019961814591869557,
468
+ "loss": 1.077,
469
+ "step": 74
470
+ },
471
+ {
472
+ "epoch": 0.32,
473
+ "learning_rate": 0.0001996061276533154,
474
+ "loss": 1.1129,
475
+ "step": 75
476
+ },
477
+ {
478
+ "epoch": 0.33,
479
+ "learning_rate": 0.00019959392355184389,
480
+ "loss": 1.2689,
481
+ "step": 76
482
+ },
483
+ {
484
+ "epoch": 0.33,
485
+ "learning_rate": 0.00019958153363705043,
486
+ "loss": 1.0738,
487
+ "step": 77
488
+ },
489
+ {
490
+ "epoch": 0.34,
491
+ "learning_rate": 0.0001995689579320509,
492
+ "loss": 1.1531,
493
+ "step": 78
494
+ },
495
+ {
496
+ "epoch": 0.34,
497
+ "learning_rate": 0.00019955619646030802,
498
+ "loss": 1.1163,
499
+ "step": 79
500
+ },
501
+ {
502
+ "epoch": 0.35,
503
+ "learning_rate": 0.00019954324924563089,
504
+ "loss": 1.0968,
505
+ "step": 80
506
+ },
507
+ {
508
+ "epoch": 0.35,
509
+ "learning_rate": 0.00019953011631217531,
510
+ "loss": 1.1209,
511
+ "step": 81
512
+ },
513
+ {
514
+ "epoch": 0.35,
515
+ "learning_rate": 0.00019951679768444346,
516
+ "loss": 0.9869,
517
+ "step": 82
518
+ },
519
+ {
520
+ "epoch": 0.36,
521
+ "learning_rate": 0.0001995032933872841,
522
+ "loss": 1.1093,
523
+ "step": 83
524
+ },
525
+ {
526
+ "epoch": 0.36,
527
+ "learning_rate": 0.0001994896034458923,
528
+ "loss": 1.0699,
529
+ "step": 84
530
+ },
531
+ {
532
+ "epoch": 0.37,
533
+ "learning_rate": 0.00019947572788580947,
534
+ "loss": 1.0447,
535
+ "step": 85
536
+ },
537
+ {
538
+ "epoch": 0.37,
539
+ "learning_rate": 0.00019946166673292344,
540
+ "loss": 1.2151,
541
+ "step": 86
542
+ },
543
+ {
544
+ "epoch": 0.38,
545
+ "learning_rate": 0.0001994474200134682,
546
+ "loss": 1.0636,
547
+ "step": 87
548
+ },
549
+ {
550
+ "epoch": 0.38,
551
+ "learning_rate": 0.00019943298775402398,
552
+ "loss": 1.1213,
553
+ "step": 88
554
+ },
555
+ {
556
+ "epoch": 0.39,
557
+ "learning_rate": 0.00019941836998151722,
558
+ "loss": 1.1241,
559
+ "step": 89
560
+ },
561
+ {
562
+ "epoch": 0.39,
563
+ "learning_rate": 0.00019940356672322037,
564
+ "loss": 1.062,
565
+ "step": 90
566
+ },
567
+ {
568
+ "epoch": 0.39,
569
+ "learning_rate": 0.00019938857800675205,
570
+ "loss": 1.1219,
571
+ "step": 91
572
+ },
573
+ {
574
+ "epoch": 0.4,
575
+ "learning_rate": 0.00019937340386007687,
576
+ "loss": 1.1362,
577
+ "step": 92
578
+ },
579
+ {
580
+ "epoch": 0.4,
581
+ "learning_rate": 0.00019935804431150538,
582
+ "loss": 1.0821,
583
+ "step": 93
584
+ },
585
+ {
586
+ "epoch": 0.41,
587
+ "learning_rate": 0.00019934249938969396,
588
+ "loss": 1.0587,
589
+ "step": 94
590
+ },
591
+ {
592
+ "epoch": 0.41,
593
+ "learning_rate": 0.000199326769123645,
594
+ "loss": 0.9533,
595
+ "step": 95
596
+ },
597
+ {
598
+ "epoch": 0.42,
599
+ "learning_rate": 0.00019931085354270658,
600
+ "loss": 1.1371,
601
+ "step": 96
602
+ },
603
+ {
604
+ "epoch": 0.42,
605
+ "learning_rate": 0.00019929475267657255,
606
+ "loss": 1.069,
607
+ "step": 97
608
+ },
609
+ {
610
+ "epoch": 0.42,
611
+ "learning_rate": 0.0001992784665552824,
612
+ "loss": 1.1461,
613
+ "step": 98
614
+ },
615
+ {
616
+ "epoch": 0.43,
617
+ "learning_rate": 0.00019926199520922135,
618
+ "loss": 1.0291,
619
+ "step": 99
620
+ },
621
+ {
622
+ "epoch": 0.43,
623
+ "learning_rate": 0.00019924533866912017,
624
+ "loss": 1.0241,
625
+ "step": 100
626
+ },
627
+ {
628
+ "epoch": 0.44,
629
+ "learning_rate": 0.00019922849696605508,
630
+ "loss": 1.0519,
631
+ "step": 101
632
+ },
633
+ {
634
+ "epoch": 0.44,
635
+ "learning_rate": 0.0001992114701314478,
636
+ "loss": 1.0983,
637
+ "step": 102
638
+ },
639
+ {
640
+ "epoch": 0.45,
641
+ "learning_rate": 0.00019919425819706548,
642
+ "loss": 1.0108,
643
+ "step": 103
644
+ },
645
+ {
646
+ "epoch": 0.45,
647
+ "learning_rate": 0.00019917686119502056,
648
+ "loss": 1.003,
649
+ "step": 104
650
+ },
651
+ {
652
+ "epoch": 0.45,
653
+ "learning_rate": 0.00019915927915777084,
654
+ "loss": 1.0954,
655
+ "step": 105
656
+ },
657
+ {
658
+ "epoch": 0.46,
659
+ "learning_rate": 0.00019914151211811924,
660
+ "loss": 1.0077,
661
+ "step": 106
662
+ },
663
+ {
664
+ "epoch": 0.46,
665
+ "learning_rate": 0.00019912356010921394,
666
+ "loss": 1.0603,
667
+ "step": 107
668
+ },
669
+ {
670
+ "epoch": 0.47,
671
+ "learning_rate": 0.00019910542316454812,
672
+ "loss": 1.0503,
673
+ "step": 108
674
+ },
675
+ {
676
+ "epoch": 0.47,
677
+ "learning_rate": 0.0001990871013179601,
678
+ "loss": 1.1574,
679
+ "step": 109
680
+ },
681
+ {
682
+ "epoch": 0.48,
683
+ "learning_rate": 0.00019906859460363307,
684
+ "loss": 0.9963,
685
+ "step": 110
686
+ },
687
+ {
688
+ "epoch": 0.48,
689
+ "learning_rate": 0.00019904990305609523,
690
+ "loss": 1.0808,
691
+ "step": 111
692
+ },
693
+ {
694
+ "epoch": 0.48,
695
+ "learning_rate": 0.00019903102671021955,
696
+ "loss": 1.0106,
697
+ "step": 112
698
+ },
699
+ {
700
+ "epoch": 0.49,
701
+ "learning_rate": 0.00019901196560122384,
702
+ "loss": 1.1367,
703
+ "step": 113
704
+ },
705
+ {
706
+ "epoch": 0.49,
707
+ "learning_rate": 0.00019899271976467055,
708
+ "loss": 0.9625,
709
+ "step": 114
710
+ },
711
+ {
712
+ "epoch": 0.5,
713
+ "learning_rate": 0.0001989732892364668,
714
+ "loss": 0.9833,
715
+ "step": 115
716
+ },
717
+ {
718
+ "epoch": 0.5,
719
+ "learning_rate": 0.0001989536740528644,
720
+ "loss": 1.0229,
721
+ "step": 116
722
+ },
723
+ {
724
+ "epoch": 0.5,
725
+ "eval_loss": 1.026347279548645,
726
+ "eval_runtime": 80.9197,
727
+ "eval_samples_per_second": 0.643,
728
+ "eval_steps_per_second": 0.321,
729
+ "step": 116
730
+ },
731
+ {
732
+ "epoch": 0.51,
733
+ "learning_rate": 0.00019893387425045948,
734
+ "loss": 0.9988,
735
+ "step": 117
736
+ },
737
+ {
738
+ "epoch": 0.51,
739
+ "learning_rate": 0.00019891388986619277,
740
+ "loss": 1.0638,
741
+ "step": 118
742
+ },
743
+ {
744
+ "epoch": 0.52,
745
+ "learning_rate": 0.00019889372093734932,
746
+ "loss": 1.0461,
747
+ "step": 119
748
+ },
749
+ {
750
+ "epoch": 0.52,
751
+ "learning_rate": 0.0001988733675015585,
752
+ "loss": 1.0636,
753
+ "step": 120
754
+ },
755
+ {
756
+ "epoch": 0.52,
757
+ "learning_rate": 0.0001988528295967939,
758
+ "loss": 1.094,
759
+ "step": 121
760
+ },
761
+ {
762
+ "epoch": 0.53,
763
+ "learning_rate": 0.00019883210726137326,
764
+ "loss": 1.1916,
765
+ "step": 122
766
+ },
767
+ {
768
+ "epoch": 0.53,
769
+ "learning_rate": 0.00019881120053395843,
770
+ "loss": 1.0594,
771
+ "step": 123
772
+ },
773
+ {
774
+ "epoch": 0.54,
775
+ "learning_rate": 0.00019879010945355534,
776
+ "loss": 1.0834,
777
+ "step": 124
778
+ },
779
+ {
780
+ "epoch": 0.54,
781
+ "learning_rate": 0.00019876883405951377,
782
+ "loss": 1.0531,
783
+ "step": 125
784
+ },
785
+ {
786
+ "epoch": 0.55,
787
+ "learning_rate": 0.00019874737439152748,
788
+ "loss": 0.9958,
789
+ "step": 126
790
+ },
791
+ {
792
+ "epoch": 0.55,
793
+ "learning_rate": 0.0001987257304896339,
794
+ "loss": 0.982,
795
+ "step": 127
796
+ },
797
+ {
798
+ "epoch": 0.55,
799
+ "learning_rate": 0.00019870390239421434,
800
+ "loss": 1.1186,
801
+ "step": 128
802
+ },
803
+ {
804
+ "epoch": 0.56,
805
+ "learning_rate": 0.00019868189014599362,
806
+ "loss": 1.0338,
807
+ "step": 129
808
+ },
809
+ {
810
+ "epoch": 0.56,
811
+ "learning_rate": 0.0001986596937860402,
812
+ "loss": 1.0408,
813
+ "step": 130
814
+ },
815
+ {
816
+ "epoch": 0.57,
817
+ "learning_rate": 0.0001986373133557661,
818
+ "loss": 1.0467,
819
+ "step": 131
820
+ },
821
+ {
822
+ "epoch": 0.57,
823
+ "learning_rate": 0.00019861474889692663,
824
+ "loss": 1.0434,
825
+ "step": 132
826
+ },
827
+ {
828
+ "epoch": 0.58,
829
+ "learning_rate": 0.00019859200045162055,
830
+ "loss": 1.0551,
831
+ "step": 133
832
+ },
833
+ {
834
+ "epoch": 0.58,
835
+ "learning_rate": 0.00019856906806228986,
836
+ "loss": 0.9985,
837
+ "step": 134
838
+ },
839
+ {
840
+ "epoch": 0.58,
841
+ "learning_rate": 0.00019854595177171968,
842
+ "loss": 1.117,
843
+ "step": 135
844
+ },
845
+ {
846
+ "epoch": 0.59,
847
+ "learning_rate": 0.00019852265162303837,
848
+ "loss": 1.0807,
849
+ "step": 136
850
+ },
851
+ {
852
+ "epoch": 0.59,
853
+ "learning_rate": 0.00019849916765971718,
854
+ "loss": 1.1331,
855
+ "step": 137
856
+ },
857
+ {
858
+ "epoch": 0.6,
859
+ "learning_rate": 0.00019847549992557038,
860
+ "loss": 0.9886,
861
+ "step": 138
862
+ },
863
+ {
864
+ "epoch": 0.6,
865
+ "learning_rate": 0.00019845164846475508,
866
+ "loss": 1.2248,
867
+ "step": 139
868
+ },
869
+ {
870
+ "epoch": 0.61,
871
+ "learning_rate": 0.00019842761332177115,
872
+ "loss": 1.0368,
873
+ "step": 140
874
+ },
875
+ {
876
+ "epoch": 0.61,
877
+ "learning_rate": 0.00019840339454146123,
878
+ "loss": 1.0343,
879
+ "step": 141
880
+ },
881
+ {
882
+ "epoch": 0.61,
883
+ "learning_rate": 0.00019837899216901053,
884
+ "loss": 1.0199,
885
+ "step": 142
886
+ },
887
+ {
888
+ "epoch": 0.62,
889
+ "learning_rate": 0.00019835440624994672,
890
+ "loss": 1.0308,
891
+ "step": 143
892
+ },
893
+ {
894
+ "epoch": 0.62,
895
+ "learning_rate": 0.00019832963683014007,
896
+ "loss": 1.1501,
897
+ "step": 144
898
+ },
899
+ {
900
+ "epoch": 0.63,
901
+ "learning_rate": 0.00019830468395580305,
902
+ "loss": 0.9705,
903
+ "step": 145
904
+ },
905
+ {
906
+ "epoch": 0.63,
907
+ "learning_rate": 0.00019827954767349048,
908
+ "loss": 1.0611,
909
+ "step": 146
910
+ },
911
+ {
912
+ "epoch": 0.64,
913
+ "learning_rate": 0.00019825422803009942,
914
+ "loss": 1.0194,
915
+ "step": 147
916
+ },
917
+ {
918
+ "epoch": 0.64,
919
+ "learning_rate": 0.0001982287250728689,
920
+ "loss": 1.0197,
921
+ "step": 148
922
+ },
923
+ {
924
+ "epoch": 0.65,
925
+ "learning_rate": 0.00019820303884938002,
926
+ "loss": 1.0534,
927
+ "step": 149
928
+ },
929
+ {
930
+ "epoch": 0.65,
931
+ "learning_rate": 0.00019817716940755586,
932
+ "loss": 1.0378,
933
+ "step": 150
934
+ },
935
+ {
936
+ "epoch": 0.65,
937
+ "learning_rate": 0.00019815111679566128,
938
+ "loss": 1.1537,
939
+ "step": 151
940
+ },
941
+ {
942
+ "epoch": 0.66,
943
+ "learning_rate": 0.00019812488106230286,
944
+ "loss": 1.0294,
945
+ "step": 152
946
+ },
947
+ {
948
+ "epoch": 0.66,
949
+ "learning_rate": 0.00019809846225642884,
950
+ "loss": 1.0661,
951
+ "step": 153
952
+ },
953
+ {
954
+ "epoch": 0.67,
955
+ "learning_rate": 0.00019807186042732907,
956
+ "loss": 0.9441,
957
+ "step": 154
958
+ },
959
+ {
960
+ "epoch": 0.67,
961
+ "learning_rate": 0.0001980450756246348,
962
+ "loss": 1.1188,
963
+ "step": 155
964
+ },
965
+ {
966
+ "epoch": 0.68,
967
+ "learning_rate": 0.00019801810789831873,
968
+ "loss": 0.9543,
969
+ "step": 156
970
+ },
971
+ {
972
+ "epoch": 0.68,
973
+ "learning_rate": 0.0001979909572986948,
974
+ "loss": 1.0754,
975
+ "step": 157
976
+ },
977
+ {
978
+ "epoch": 0.68,
979
+ "learning_rate": 0.00019796362387641806,
980
+ "loss": 0.9803,
981
+ "step": 158
982
+ },
983
+ {
984
+ "epoch": 0.69,
985
+ "learning_rate": 0.00019793610768248482,
986
+ "loss": 1.1368,
987
+ "step": 159
988
+ },
989
+ {
990
+ "epoch": 0.69,
991
+ "learning_rate": 0.00019790840876823232,
992
+ "loss": 0.996,
993
+ "step": 160
994
+ },
995
+ {
996
+ "epoch": 0.7,
997
+ "learning_rate": 0.00019788052718533857,
998
+ "loss": 1.1974,
999
+ "step": 161
1000
+ },
1001
+ {
1002
+ "epoch": 0.7,
1003
+ "learning_rate": 0.0001978524629858226,
1004
+ "loss": 0.9604,
1005
+ "step": 162
1006
+ },
1007
+ {
1008
+ "epoch": 0.71,
1009
+ "learning_rate": 0.00019782421622204402,
1010
+ "loss": 1.0494,
1011
+ "step": 163
1012
+ },
1013
+ {
1014
+ "epoch": 0.71,
1015
+ "learning_rate": 0.0001977957869467031,
1016
+ "loss": 1.0568,
1017
+ "step": 164
1018
+ },
1019
+ {
1020
+ "epoch": 0.71,
1021
+ "learning_rate": 0.00019776717521284058,
1022
+ "loss": 1.0821,
1023
+ "step": 165
1024
+ },
1025
+ {
1026
+ "epoch": 0.72,
1027
+ "learning_rate": 0.00019773838107383767,
1028
+ "loss": 1.0717,
1029
+ "step": 166
1030
+ },
1031
+ {
1032
+ "epoch": 0.72,
1033
+ "learning_rate": 0.00019770940458341583,
1034
+ "loss": 1.0897,
1035
+ "step": 167
1036
+ },
1037
+ {
1038
+ "epoch": 0.73,
1039
+ "learning_rate": 0.0001976802457956368,
1040
+ "loss": 1.1423,
1041
+ "step": 168
1042
+ },
1043
+ {
1044
+ "epoch": 0.73,
1045
+ "learning_rate": 0.0001976509047649024,
1046
+ "loss": 1.0614,
1047
+ "step": 169
1048
+ },
1049
+ {
1050
+ "epoch": 0.74,
1051
+ "learning_rate": 0.00019762138154595446,
1052
+ "loss": 1.0298,
1053
+ "step": 170
1054
+ },
1055
+ {
1056
+ "epoch": 0.74,
1057
+ "learning_rate": 0.00019759167619387476,
1058
+ "loss": 0.9958,
1059
+ "step": 171
1060
+ },
1061
+ {
1062
+ "epoch": 0.74,
1063
+ "learning_rate": 0.0001975617887640848,
1064
+ "loss": 1.0356,
1065
+ "step": 172
1066
+ },
1067
+ {
1068
+ "epoch": 0.75,
1069
+ "learning_rate": 0.00019753171931234588,
1070
+ "loss": 0.9921,
1071
+ "step": 173
1072
+ },
1073
+ {
1074
+ "epoch": 0.75,
1075
+ "learning_rate": 0.00019750146789475885,
1076
+ "loss": 1.2044,
1077
+ "step": 174
1078
+ },
1079
+ {
1080
+ "epoch": 0.75,
1081
+ "eval_loss": 1.0114357471466064,
1082
+ "eval_runtime": 81.1178,
1083
+ "eval_samples_per_second": 0.641,
1084
+ "eval_steps_per_second": 0.321,
1085
+ "step": 174
1086
+ },
1087
+ {
1088
+ "epoch": 0.76,
1089
+ "learning_rate": 0.00019747103456776405,
1090
+ "loss": 0.9703,
1091
+ "step": 175
1092
+ },
1093
+ {
1094
+ "epoch": 0.76,
1095
+ "learning_rate": 0.00019744041938814127,
1096
+ "loss": 0.9922,
1097
+ "step": 176
1098
+ },
1099
+ {
1100
+ "epoch": 0.77,
1101
+ "learning_rate": 0.00019740962241300949,
1102
+ "loss": 1.0438,
1103
+ "step": 177
1104
+ },
1105
+ {
1106
+ "epoch": 0.77,
1107
+ "learning_rate": 0.00019737864369982693,
1108
+ "loss": 1.1058,
1109
+ "step": 178
1110
+ },
1111
+ {
1112
+ "epoch": 0.77,
1113
+ "learning_rate": 0.00019734748330639085,
1114
+ "loss": 0.9976,
1115
+ "step": 179
1116
+ },
1117
+ {
1118
+ "epoch": 0.78,
1119
+ "learning_rate": 0.00019731614129083754,
1120
+ "loss": 1.0805,
1121
+ "step": 180
1122
+ },
1123
+ {
1124
+ "epoch": 0.78,
1125
+ "learning_rate": 0.00019728461771164208,
1126
+ "loss": 1.094,
1127
+ "step": 181
1128
+ },
1129
+ {
1130
+ "epoch": 0.79,
1131
+ "learning_rate": 0.00019725291262761828,
1132
+ "loss": 1.0198,
1133
+ "step": 182
1134
+ },
1135
+ {
1136
+ "epoch": 0.79,
1137
+ "learning_rate": 0.00019722102609791861,
1138
+ "loss": 1.1689,
1139
+ "step": 183
1140
+ },
1141
+ {
1142
+ "epoch": 0.8,
1143
+ "learning_rate": 0.00019718895818203412,
1144
+ "loss": 0.9169,
1145
+ "step": 184
1146
+ },
1147
+ {
1148
+ "epoch": 0.8,
1149
+ "learning_rate": 0.00019715670893979414,
1150
+ "loss": 0.9862,
1151
+ "step": 185
1152
+ },
1153
+ {
1154
+ "epoch": 0.81,
1155
+ "learning_rate": 0.0001971242784313665,
1156
+ "loss": 0.9377,
1157
+ "step": 186
1158
+ },
1159
+ {
1160
+ "epoch": 0.81,
1161
+ "learning_rate": 0.00019709166671725702,
1162
+ "loss": 1.2023,
1163
+ "step": 187
1164
+ },
1165
+ {
1166
+ "epoch": 0.81,
1167
+ "learning_rate": 0.00019705887385830967,
1168
+ "loss": 0.9953,
1169
+ "step": 188
1170
+ },
1171
+ {
1172
+ "epoch": 0.82,
1173
+ "learning_rate": 0.00019702589991570647,
1174
+ "loss": 1.0906,
1175
+ "step": 189
1176
+ },
1177
+ {
1178
+ "epoch": 0.82,
1179
+ "learning_rate": 0.00019699274495096712,
1180
+ "loss": 1.0964,
1181
+ "step": 190
1182
+ },
1183
+ {
1184
+ "epoch": 0.83,
1185
+ "learning_rate": 0.00019695940902594926,
1186
+ "loss": 0.9253,
1187
+ "step": 191
1188
+ },
1189
+ {
1190
+ "epoch": 0.83,
1191
+ "learning_rate": 0.00019692589220284795,
1192
+ "loss": 1.1055,
1193
+ "step": 192
1194
+ },
1195
+ {
1196
+ "epoch": 0.84,
1197
+ "learning_rate": 0.0001968921945441959,
1198
+ "loss": 1.0955,
1199
+ "step": 193
1200
+ },
1201
+ {
1202
+ "epoch": 0.84,
1203
+ "learning_rate": 0.0001968583161128631,
1204
+ "loss": 0.9852,
1205
+ "step": 194
1206
+ },
1207
+ {
1208
+ "epoch": 0.84,
1209
+ "learning_rate": 0.00019682425697205693,
1210
+ "loss": 1.1119,
1211
+ "step": 195
1212
+ },
1213
+ {
1214
+ "epoch": 0.85,
1215
+ "learning_rate": 0.00019679001718532176,
1216
+ "loss": 1.0639,
1217
+ "step": 196
1218
+ },
1219
+ {
1220
+ "epoch": 0.85,
1221
+ "learning_rate": 0.00019675559681653918,
1222
+ "loss": 0.9929,
1223
+ "step": 197
1224
+ },
1225
+ {
1226
+ "epoch": 0.86,
1227
+ "learning_rate": 0.0001967209959299275,
1228
+ "loss": 1.0679,
1229
+ "step": 198
1230
+ },
1231
+ {
1232
+ "epoch": 0.86,
1233
+ "learning_rate": 0.00019668621459004198,
1234
+ "loss": 1.0858,
1235
+ "step": 199
1236
+ },
1237
+ {
1238
+ "epoch": 0.87,
1239
+ "learning_rate": 0.00019665125286177449,
1240
+ "loss": 1.0464,
1241
+ "step": 200
1242
+ },
1243
+ {
1244
+ "epoch": 0.87,
1245
+ "learning_rate": 0.00019661611081035342,
1246
+ "loss": 1.0395,
1247
+ "step": 201
1248
+ },
1249
+ {
1250
+ "epoch": 0.87,
1251
+ "learning_rate": 0.00019658078850134366,
1252
+ "loss": 1.1564,
1253
+ "step": 202
1254
+ },
1255
+ {
1256
+ "epoch": 0.88,
1257
+ "learning_rate": 0.00019654528600064638,
1258
+ "loss": 1.0532,
1259
+ "step": 203
1260
+ },
1261
+ {
1262
+ "epoch": 0.88,
1263
+ "learning_rate": 0.0001965096033744989,
1264
+ "loss": 1.0791,
1265
+ "step": 204
1266
+ },
1267
+ {
1268
+ "epoch": 0.89,
1269
+ "learning_rate": 0.0001964737406894747,
1270
+ "loss": 1.0113,
1271
+ "step": 205
1272
+ },
1273
+ {
1274
+ "epoch": 0.89,
1275
+ "learning_rate": 0.000196437698012483,
1276
+ "loss": 0.9027,
1277
+ "step": 206
1278
+ },
1279
+ {
1280
+ "epoch": 0.9,
1281
+ "learning_rate": 0.00019640147541076907,
1282
+ "loss": 1.0135,
1283
+ "step": 207
1284
+ },
1285
+ {
1286
+ "epoch": 0.9,
1287
+ "learning_rate": 0.00019636507295191376,
1288
+ "loss": 1.05,
1289
+ "step": 208
1290
+ },
1291
+ {
1292
+ "epoch": 0.9,
1293
+ "learning_rate": 0.00019632849070383342,
1294
+ "loss": 1.0013,
1295
+ "step": 209
1296
+ },
1297
+ {
1298
+ "epoch": 0.91,
1299
+ "learning_rate": 0.00019629172873477995,
1300
+ "loss": 0.9422,
1301
+ "step": 210
1302
+ },
1303
+ {
1304
+ "epoch": 0.91,
1305
+ "learning_rate": 0.00019625478711334044,
1306
+ "loss": 1.0928,
1307
+ "step": 211
1308
+ },
1309
+ {
1310
+ "epoch": 0.92,
1311
+ "learning_rate": 0.00019621766590843727,
1312
+ "loss": 1.0085,
1313
+ "step": 212
1314
+ },
1315
+ {
1316
+ "epoch": 0.92,
1317
+ "learning_rate": 0.00019618036518932784,
1318
+ "loss": 1.1621,
1319
+ "step": 213
1320
+ },
1321
+ {
1322
+ "epoch": 0.93,
1323
+ "learning_rate": 0.0001961428850256044,
1324
+ "loss": 0.9738,
1325
+ "step": 214
1326
+ },
1327
+ {
1328
+ "epoch": 0.93,
1329
+ "learning_rate": 0.0001961052254871941,
1330
+ "loss": 1.0869,
1331
+ "step": 215
1332
+ },
1333
+ {
1334
+ "epoch": 0.94,
1335
+ "learning_rate": 0.0001960673866443586,
1336
+ "loss": 1.0263,
1337
+ "step": 216
1338
+ },
1339
+ {
1340
+ "epoch": 0.94,
1341
+ "learning_rate": 0.0001960293685676943,
1342
+ "loss": 0.9994,
1343
+ "step": 217
1344
+ },
1345
+ {
1346
+ "epoch": 0.94,
1347
+ "learning_rate": 0.00019599117132813184,
1348
+ "loss": 1.1272,
1349
+ "step": 218
1350
+ },
1351
+ {
1352
+ "epoch": 0.95,
1353
+ "learning_rate": 0.00019595279499693614,
1354
+ "loss": 1.0041,
1355
+ "step": 219
1356
+ },
1357
+ {
1358
+ "epoch": 0.95,
1359
+ "learning_rate": 0.00019591423964570632,
1360
+ "loss": 1.0379,
1361
+ "step": 220
1362
+ },
1363
+ {
1364
+ "epoch": 0.96,
1365
+ "learning_rate": 0.00019587550534637545,
1366
+ "loss": 1.039,
1367
+ "step": 221
1368
+ },
1369
+ {
1370
+ "epoch": 0.96,
1371
+ "learning_rate": 0.0001958365921712105,
1372
+ "loss": 0.9473,
1373
+ "step": 222
1374
+ },
1375
+ {
1376
+ "epoch": 0.97,
1377
+ "learning_rate": 0.00019579750019281208,
1378
+ "loss": 0.9826,
1379
+ "step": 223
1380
+ },
1381
+ {
1382
+ "epoch": 0.97,
1383
+ "learning_rate": 0.00019575822948411452,
1384
+ "loss": 1.0042,
1385
+ "step": 224
1386
+ },
1387
+ {
1388
+ "epoch": 0.97,
1389
+ "learning_rate": 0.00019571878011838555,
1390
+ "loss": 1.0246,
1391
+ "step": 225
1392
+ },
1393
+ {
1394
+ "epoch": 0.98,
1395
+ "learning_rate": 0.00019567915216922623,
1396
+ "loss": 0.9494,
1397
+ "step": 226
1398
+ },
1399
+ {
1400
+ "epoch": 0.98,
1401
+ "learning_rate": 0.00019563934571057074,
1402
+ "loss": 1.0588,
1403
+ "step": 227
1404
+ },
1405
+ {
1406
+ "epoch": 0.99,
1407
+ "learning_rate": 0.00019559936081668645,
1408
+ "loss": 1.044,
1409
+ "step": 228
1410
+ },
1411
+ {
1412
+ "epoch": 0.99,
1413
+ "learning_rate": 0.00019555919756217348,
1414
+ "loss": 1.0803,
1415
+ "step": 229
1416
+ },
1417
+ {
1418
+ "epoch": 1.0,
1419
+ "learning_rate": 0.0001955188560219648,
1420
+ "loss": 1.0251,
1421
+ "step": 230
1422
+ },
1423
+ {
1424
+ "epoch": 1.0,
1425
+ "learning_rate": 0.00019547833627132607,
1426
+ "loss": 1.0764,
1427
+ "step": 231
1428
+ },
1429
+ {
1430
+ "epoch": 1.0,
1431
+ "learning_rate": 0.0001954376383858553,
1432
+ "loss": 1.0182,
1433
+ "step": 232
1434
+ },
1435
+ {
1436
+ "epoch": 1.0,
1437
+ "eval_loss": 1.0018986463546753,
1438
+ "eval_runtime": 80.9338,
1439
+ "eval_samples_per_second": 0.643,
1440
+ "eval_steps_per_second": 0.321,
1441
+ "step": 232
1442
+ },
1443
+ {
1444
+ "epoch": 1.01,
1445
+ "learning_rate": 0.00019539676244148294,
1446
+ "loss": 1.081,
1447
+ "step": 233
1448
+ },
1449
+ {
1450
+ "epoch": 1.01,
1451
+ "learning_rate": 0.00019535570851447165,
1452
+ "loss": 1.07,
1453
+ "step": 234
1454
+ },
1455
+ {
1456
+ "epoch": 1.02,
1457
+ "learning_rate": 0.00019531447668141608,
1458
+ "loss": 1.0361,
1459
+ "step": 235
1460
+ },
1461
+ {
1462
+ "epoch": 1.02,
1463
+ "learning_rate": 0.0001952730670192429,
1464
+ "loss": 1.1156,
1465
+ "step": 236
1466
+ },
1467
+ {
1468
+ "epoch": 1.0,
1469
+ "learning_rate": 0.00019523147960521047,
1470
+ "loss": 0.9632,
1471
+ "step": 237
1472
+ },
1473
+ {
1474
+ "epoch": 1.01,
1475
+ "learning_rate": 0.00019518971451690885,
1476
+ "loss": 1.033,
1477
+ "step": 238
1478
+ },
1479
+ {
1480
+ "epoch": 1.01,
1481
+ "learning_rate": 0.00019514777183225952,
1482
+ "loss": 1.0654,
1483
+ "step": 239
1484
+ },
1485
+ {
1486
+ "epoch": 1.02,
1487
+ "learning_rate": 0.00019510565162951537,
1488
+ "loss": 0.9885,
1489
+ "step": 240
1490
+ },
1491
+ {
1492
+ "epoch": 1.02,
1493
+ "learning_rate": 0.00019506335398726044,
1494
+ "loss": 0.959,
1495
+ "step": 241
1496
+ },
1497
+ {
1498
+ "epoch": 1.03,
1499
+ "learning_rate": 0.00019502087898440987,
1500
+ "loss": 0.9577,
1501
+ "step": 242
1502
+ },
1503
+ {
1504
+ "epoch": 1.03,
1505
+ "learning_rate": 0.00019497822670020966,
1506
+ "loss": 1.0313,
1507
+ "step": 243
1508
+ },
1509
+ {
1510
+ "epoch": 1.03,
1511
+ "learning_rate": 0.00019493539721423658,
1512
+ "loss": 0.9624,
1513
+ "step": 244
1514
+ },
1515
+ {
1516
+ "epoch": 1.04,
1517
+ "learning_rate": 0.00019489239060639798,
1518
+ "loss": 0.997,
1519
+ "step": 245
1520
+ },
1521
+ {
1522
+ "epoch": 1.04,
1523
+ "learning_rate": 0.00019484920695693174,
1524
+ "loss": 0.9422,
1525
+ "step": 246
1526
+ },
1527
+ {
1528
+ "epoch": 1.05,
1529
+ "learning_rate": 0.00019480584634640598,
1530
+ "loss": 0.9803,
1531
+ "step": 247
1532
+ },
1533
+ {
1534
+ "epoch": 1.05,
1535
+ "learning_rate": 0.00019476230885571898,
1536
+ "loss": 1.0103,
1537
+ "step": 248
1538
+ },
1539
+ {
1540
+ "epoch": 1.06,
1541
+ "learning_rate": 0.00019471859456609907,
1542
+ "loss": 0.9219,
1543
+ "step": 249
1544
+ },
1545
+ {
1546
+ "epoch": 1.06,
1547
+ "learning_rate": 0.00019467470355910438,
1548
+ "loss": 0.9467,
1549
+ "step": 250
1550
+ },
1551
+ {
1552
+ "epoch": 1.06,
1553
+ "learning_rate": 0.00019463063591662282,
1554
+ "loss": 1.0323,
1555
+ "step": 251
1556
+ },
1557
+ {
1558
+ "epoch": 1.07,
1559
+ "learning_rate": 0.00019458639172087181,
1560
+ "loss": 0.9904,
1561
+ "step": 252
1562
+ },
1563
+ {
1564
+ "epoch": 1.07,
1565
+ "learning_rate": 0.0001945419710543981,
1566
+ "loss": 0.9563,
1567
+ "step": 253
1568
+ },
1569
+ {
1570
+ "epoch": 1.08,
1571
+ "learning_rate": 0.0001944973740000778,
1572
+ "loss": 0.9692,
1573
+ "step": 254
1574
+ },
1575
+ {
1576
+ "epoch": 1.08,
1577
+ "learning_rate": 0.00019445260064111607,
1578
+ "loss": 0.974,
1579
+ "step": 255
1580
+ },
1581
+ {
1582
+ "epoch": 1.09,
1583
+ "learning_rate": 0.00019440765106104694,
1584
+ "loss": 0.9765,
1585
+ "step": 256
1586
+ },
1587
+ {
1588
+ "epoch": 1.09,
1589
+ "learning_rate": 0.00019436252534373326,
1590
+ "loss": 1.0195,
1591
+ "step": 257
1592
+ },
1593
+ {
1594
+ "epoch": 1.1,
1595
+ "learning_rate": 0.00019431722357336656,
1596
+ "loss": 0.984,
1597
+ "step": 258
1598
+ },
1599
+ {
1600
+ "epoch": 1.1,
1601
+ "learning_rate": 0.00019427174583446673,
1602
+ "loss": 0.9831,
1603
+ "step": 259
1604
+ },
1605
+ {
1606
+ "epoch": 1.1,
1607
+ "learning_rate": 0.00019422609221188207,
1608
+ "loss": 0.9619,
1609
+ "step": 260
1610
+ },
1611
+ {
1612
+ "epoch": 1.11,
1613
+ "learning_rate": 0.0001941802627907889,
1614
+ "loss": 1.0052,
1615
+ "step": 261
1616
+ },
1617
+ {
1618
+ "epoch": 1.11,
1619
+ "learning_rate": 0.00019413425765669166,
1620
+ "loss": 0.885,
1621
+ "step": 262
1622
+ },
1623
+ {
1624
+ "epoch": 1.12,
1625
+ "learning_rate": 0.00019408807689542257,
1626
+ "loss": 0.9341,
1627
+ "step": 263
1628
+ },
1629
+ {
1630
+ "epoch": 1.12,
1631
+ "learning_rate": 0.00019404172059314144,
1632
+ "loss": 0.9914,
1633
+ "step": 264
1634
+ },
1635
+ {
1636
+ "epoch": 1.13,
1637
+ "learning_rate": 0.00019399518883633573,
1638
+ "loss": 0.9276,
1639
+ "step": 265
1640
+ },
1641
+ {
1642
+ "epoch": 1.13,
1643
+ "learning_rate": 0.0001939484817118202,
1644
+ "loss": 1.0014,
1645
+ "step": 266
1646
+ },
1647
+ {
1648
+ "epoch": 1.13,
1649
+ "learning_rate": 0.00019390159930673666,
1650
+ "loss": 1.1253,
1651
+ "step": 267
1652
+ },
1653
+ {
1654
+ "epoch": 1.14,
1655
+ "learning_rate": 0.00019385454170855416,
1656
+ "loss": 0.8932,
1657
+ "step": 268
1658
+ },
1659
+ {
1660
+ "epoch": 1.14,
1661
+ "learning_rate": 0.00019380730900506844,
1662
+ "loss": 1.0478,
1663
+ "step": 269
1664
+ },
1665
+ {
1666
+ "epoch": 1.15,
1667
+ "learning_rate": 0.00019375990128440204,
1668
+ "loss": 0.9962,
1669
+ "step": 270
1670
+ },
1671
+ {
1672
+ "epoch": 1.15,
1673
+ "learning_rate": 0.00019371231863500398,
1674
+ "loss": 0.8538,
1675
+ "step": 271
1676
+ },
1677
+ {
1678
+ "epoch": 1.16,
1679
+ "learning_rate": 0.00019366456114564966,
1680
+ "loss": 0.8961,
1681
+ "step": 272
1682
+ },
1683
+ {
1684
+ "epoch": 1.16,
1685
+ "learning_rate": 0.0001936166289054407,
1686
+ "loss": 1.0277,
1687
+ "step": 273
1688
+ },
1689
+ {
1690
+ "epoch": 1.16,
1691
+ "learning_rate": 0.00019356852200380463,
1692
+ "loss": 1.036,
1693
+ "step": 274
1694
+ },
1695
+ {
1696
+ "epoch": 1.17,
1697
+ "learning_rate": 0.0001935202405304951,
1698
+ "loss": 1.0146,
1699
+ "step": 275
1700
+ },
1701
+ {
1702
+ "epoch": 1.17,
1703
+ "learning_rate": 0.0001934717845755912,
1704
+ "loss": 0.9657,
1705
+ "step": 276
1706
+ },
1707
+ {
1708
+ "epoch": 1.18,
1709
+ "learning_rate": 0.0001934231542294977,
1710
+ "loss": 1.0322,
1711
+ "step": 277
1712
+ },
1713
+ {
1714
+ "epoch": 1.18,
1715
+ "learning_rate": 0.00019337434958294471,
1716
+ "loss": 1.0221,
1717
+ "step": 278
1718
+ },
1719
+ {
1720
+ "epoch": 1.19,
1721
+ "learning_rate": 0.0001933253707269875,
1722
+ "loss": 0.985,
1723
+ "step": 279
1724
+ },
1725
+ {
1726
+ "epoch": 1.19,
1727
+ "learning_rate": 0.00019327621775300637,
1728
+ "loss": 0.9492,
1729
+ "step": 280
1730
+ },
1731
+ {
1732
+ "epoch": 1.19,
1733
+ "learning_rate": 0.00019322689075270652,
1734
+ "loss": 1.0773,
1735
+ "step": 281
1736
+ },
1737
+ {
1738
+ "epoch": 1.2,
1739
+ "learning_rate": 0.00019317738981811778,
1740
+ "loss": 1.0923,
1741
+ "step": 282
1742
+ },
1743
+ {
1744
+ "epoch": 1.2,
1745
+ "learning_rate": 0.00019312771504159448,
1746
+ "loss": 0.91,
1747
+ "step": 283
1748
+ },
1749
+ {
1750
+ "epoch": 1.21,
1751
+ "learning_rate": 0.00019307786651581542,
1752
+ "loss": 0.9786,
1753
+ "step": 284
1754
+ },
1755
+ {
1756
+ "epoch": 1.21,
1757
+ "learning_rate": 0.0001930278443337833,
1758
+ "loss": 0.9862,
1759
+ "step": 285
1760
+ },
1761
+ {
1762
+ "epoch": 1.22,
1763
+ "learning_rate": 0.00019297764858882514,
1764
+ "loss": 0.9334,
1765
+ "step": 286
1766
+ },
1767
+ {
1768
+ "epoch": 1.22,
1769
+ "learning_rate": 0.00019292727937459154,
1770
+ "loss": 0.984,
1771
+ "step": 287
1772
+ },
1773
+ {
1774
+ "epoch": 1.23,
1775
+ "learning_rate": 0.00019287673678505682,
1776
+ "loss": 0.8539,
1777
+ "step": 288
1778
+ },
1779
+ {
1780
+ "epoch": 1.23,
1781
+ "learning_rate": 0.0001928260209145188,
1782
+ "loss": 0.96,
1783
+ "step": 289
1784
+ },
1785
+ {
1786
+ "epoch": 1.23,
1787
+ "learning_rate": 0.00019277513185759844,
1788
+ "loss": 0.9604,
1789
+ "step": 290
1790
+ },
1791
+ {
1792
+ "epoch": 1.23,
1793
+ "eval_loss": 1.0004881620407104,
1794
+ "eval_runtime": 80.9806,
1795
+ "eval_samples_per_second": 0.642,
1796
+ "eval_steps_per_second": 0.321,
1797
+ "step": 290
1798
+ },
1799
+ {
1800
+ "epoch": 1.24,
1801
+ "learning_rate": 0.0001927240697092401,
1802
+ "loss": 1.0287,
1803
+ "step": 291
1804
+ },
1805
+ {
1806
+ "epoch": 1.24,
1807
+ "learning_rate": 0.0001926728345647108,
1808
+ "loss": 0.994,
1809
+ "step": 292
1810
+ },
1811
+ {
1812
+ "epoch": 1.25,
1813
+ "learning_rate": 0.00019262142651960048,
1814
+ "loss": 0.9442,
1815
+ "step": 293
1816
+ },
1817
+ {
1818
+ "epoch": 1.25,
1819
+ "learning_rate": 0.0001925698456698216,
1820
+ "loss": 1.0317,
1821
+ "step": 294
1822
+ },
1823
+ {
1824
+ "epoch": 1.26,
1825
+ "learning_rate": 0.00019251809211160903,
1826
+ "loss": 0.9337,
1827
+ "step": 295
1828
+ },
1829
+ {
1830
+ "epoch": 1.26,
1831
+ "learning_rate": 0.00019246616594151985,
1832
+ "loss": 0.9683,
1833
+ "step": 296
1834
+ },
1835
+ {
1836
+ "epoch": 1.26,
1837
+ "learning_rate": 0.00019241406725643327,
1838
+ "loss": 0.9819,
1839
+ "step": 297
1840
+ },
1841
+ {
1842
+ "epoch": 1.27,
1843
+ "learning_rate": 0.00019236179615355026,
1844
+ "loss": 0.9556,
1845
+ "step": 298
1846
+ },
1847
+ {
1848
+ "epoch": 1.27,
1849
+ "learning_rate": 0.0001923093527303935,
1850
+ "loss": 1.0034,
1851
+ "step": 299
1852
+ },
1853
+ {
1854
+ "epoch": 1.28,
1855
+ "learning_rate": 0.00019225673708480717,
1856
+ "loss": 0.9104,
1857
+ "step": 300
1858
+ },
1859
+ {
1860
+ "epoch": 1.28,
1861
+ "learning_rate": 0.00019220394931495683,
1862
+ "loss": 0.9555,
1863
+ "step": 301
1864
+ },
1865
+ {
1866
+ "epoch": 1.29,
1867
+ "learning_rate": 0.00019215098951932906,
1868
+ "loss": 1.0719,
1869
+ "step": 302
1870
+ },
1871
+ {
1872
+ "epoch": 1.29,
1873
+ "learning_rate": 0.0001920978577967315,
1874
+ "loss": 0.9801,
1875
+ "step": 303
1876
+ },
1877
+ {
1878
+ "epoch": 1.29,
1879
+ "learning_rate": 0.0001920445542462925,
1880
+ "loss": 0.9875,
1881
+ "step": 304
1882
+ },
1883
+ {
1884
+ "epoch": 1.3,
1885
+ "learning_rate": 0.0001919910789674609,
1886
+ "loss": 0.9806,
1887
+ "step": 305
1888
+ },
1889
+ {
1890
+ "epoch": 1.3,
1891
+ "learning_rate": 0.00019193743206000617,
1892
+ "loss": 1.0391,
1893
+ "step": 306
1894
+ },
1895
+ {
1896
+ "epoch": 1.31,
1897
+ "learning_rate": 0.00019188361362401776,
1898
+ "loss": 0.9475,
1899
+ "step": 307
1900
+ },
1901
+ {
1902
+ "epoch": 1.31,
1903
+ "learning_rate": 0.0001918296237599053,
1904
+ "loss": 0.9549,
1905
+ "step": 308
1906
+ },
1907
+ {
1908
+ "epoch": 1.32,
1909
+ "learning_rate": 0.00019177546256839812,
1910
+ "loss": 0.9201,
1911
+ "step": 309
1912
+ },
1913
+ {
1914
+ "epoch": 1.32,
1915
+ "learning_rate": 0.00019172113015054532,
1916
+ "loss": 0.8709,
1917
+ "step": 310
1918
+ },
1919
+ {
1920
+ "epoch": 1.32,
1921
+ "learning_rate": 0.00019166662660771534,
1922
+ "loss": 0.9228,
1923
+ "step": 311
1924
+ },
1925
+ {
1926
+ "epoch": 1.33,
1927
+ "learning_rate": 0.00019161195204159604,
1928
+ "loss": 0.9925,
1929
+ "step": 312
1930
+ },
1931
+ {
1932
+ "epoch": 1.33,
1933
+ "learning_rate": 0.0001915571065541942,
1934
+ "loss": 0.9712,
1935
+ "step": 313
1936
+ },
1937
+ {
1938
+ "epoch": 1.34,
1939
+ "learning_rate": 0.00019150209024783562,
1940
+ "loss": 0.9587,
1941
+ "step": 314
1942
+ },
1943
+ {
1944
+ "epoch": 1.34,
1945
+ "learning_rate": 0.0001914469032251647,
1946
+ "loss": 1.0361,
1947
+ "step": 315
1948
+ },
1949
+ {
1950
+ "epoch": 1.35,
1951
+ "learning_rate": 0.0001913915455891444,
1952
+ "loss": 1.0425,
1953
+ "step": 316
1954
+ },
1955
+ {
1956
+ "epoch": 1.35,
1957
+ "learning_rate": 0.000191336017443056,
1958
+ "loss": 0.9597,
1959
+ "step": 317
1960
+ },
1961
+ {
1962
+ "epoch": 1.35,
1963
+ "learning_rate": 0.00019128031889049883,
1964
+ "loss": 0.9656,
1965
+ "step": 318
1966
+ },
1967
+ {
1968
+ "epoch": 1.36,
1969
+ "learning_rate": 0.00019122445003539026,
1970
+ "loss": 0.946,
1971
+ "step": 319
1972
+ },
1973
+ {
1974
+ "epoch": 1.36,
1975
+ "learning_rate": 0.00019116841098196536,
1976
+ "loss": 0.9749,
1977
+ "step": 320
1978
+ },
1979
+ {
1980
+ "epoch": 1.37,
1981
+ "learning_rate": 0.00019111220183477666,
1982
+ "loss": 0.9431,
1983
+ "step": 321
1984
+ },
1985
+ {
1986
+ "epoch": 1.37,
1987
+ "learning_rate": 0.00019105582269869412,
1988
+ "loss": 0.9995,
1989
+ "step": 322
1990
+ },
1991
+ {
1992
+ "epoch": 1.38,
1993
+ "learning_rate": 0.0001909992736789048,
1994
+ "loss": 1.032,
1995
+ "step": 323
1996
+ },
1997
+ {
1998
+ "epoch": 1.38,
1999
+ "learning_rate": 0.00019094255488091283,
2000
+ "loss": 1.0638,
2001
+ "step": 324
2002
+ },
2003
+ {
2004
+ "epoch": 1.39,
2005
+ "learning_rate": 0.00019088566641053885,
2006
+ "loss": 1.0164,
2007
+ "step": 325
2008
+ },
2009
+ {
2010
+ "epoch": 1.39,
2011
+ "learning_rate": 0.00019082860837392037,
2012
+ "loss": 1.0147,
2013
+ "step": 326
2014
+ },
2015
+ {
2016
+ "epoch": 1.39,
2017
+ "learning_rate": 0.00019077138087751104,
2018
+ "loss": 1.0552,
2019
+ "step": 327
2020
+ },
2021
+ {
2022
+ "epoch": 1.4,
2023
+ "learning_rate": 0.00019071398402808074,
2024
+ "loss": 0.9179,
2025
+ "step": 328
2026
+ },
2027
+ {
2028
+ "epoch": 1.4,
2029
+ "learning_rate": 0.0001906564179327153,
2030
+ "loss": 1.0738,
2031
+ "step": 329
2032
+ },
2033
+ {
2034
+ "epoch": 1.41,
2035
+ "learning_rate": 0.0001905986826988164,
2036
+ "loss": 0.9954,
2037
+ "step": 330
2038
+ },
2039
+ {
2040
+ "epoch": 1.41,
2041
+ "learning_rate": 0.00019054077843410106,
2042
+ "loss": 0.9737,
2043
+ "step": 331
2044
+ },
2045
+ {
2046
+ "epoch": 1.42,
2047
+ "learning_rate": 0.00019048270524660196,
2048
+ "loss": 0.9321,
2049
+ "step": 332
2050
+ },
2051
+ {
2052
+ "epoch": 1.42,
2053
+ "learning_rate": 0.00019042446324466674,
2054
+ "loss": 1.034,
2055
+ "step": 333
2056
+ },
2057
+ {
2058
+ "epoch": 1.42,
2059
+ "learning_rate": 0.00019036605253695802,
2060
+ "loss": 0.9852,
2061
+ "step": 334
2062
+ },
2063
+ {
2064
+ "epoch": 1.43,
2065
+ "learning_rate": 0.00019030747323245327,
2066
+ "loss": 1.0359,
2067
+ "step": 335
2068
+ },
2069
+ {
2070
+ "epoch": 1.43,
2071
+ "learning_rate": 0.0001902487254404444,
2072
+ "loss": 1.0103,
2073
+ "step": 336
2074
+ },
2075
+ {
2076
+ "epoch": 1.44,
2077
+ "learning_rate": 0.00019018980927053777,
2078
+ "loss": 0.9564,
2079
+ "step": 337
2080
+ },
2081
+ {
2082
+ "epoch": 1.44,
2083
+ "learning_rate": 0.00019013072483265377,
2084
+ "loss": 0.8988,
2085
+ "step": 338
2086
+ },
2087
+ {
2088
+ "epoch": 1.45,
2089
+ "learning_rate": 0.00019007147223702687,
2090
+ "loss": 0.9197,
2091
+ "step": 339
2092
+ },
2093
+ {
2094
+ "epoch": 1.45,
2095
+ "learning_rate": 0.00019001205159420513,
2096
+ "loss": 1.0789,
2097
+ "step": 340
2098
+ },
2099
+ {
2100
+ "epoch": 1.45,
2101
+ "learning_rate": 0.0001899524630150502,
2102
+ "loss": 1.0591,
2103
+ "step": 341
2104
+ },
2105
+ {
2106
+ "epoch": 1.46,
2107
+ "learning_rate": 0.0001898927066107371,
2108
+ "loss": 0.9553,
2109
+ "step": 342
2110
+ },
2111
+ {
2112
+ "epoch": 1.46,
2113
+ "learning_rate": 0.00018983278249275388,
2114
+ "loss": 0.8957,
2115
+ "step": 343
2116
+ },
2117
+ {
2118
+ "epoch": 1.47,
2119
+ "learning_rate": 0.00018977269077290155,
2120
+ "loss": 0.9349,
2121
+ "step": 344
2122
+ },
2123
+ {
2124
+ "epoch": 1.47,
2125
+ "learning_rate": 0.00018971243156329378,
2126
+ "loss": 0.9705,
2127
+ "step": 345
2128
+ },
2129
+ {
2130
+ "epoch": 1.48,
2131
+ "learning_rate": 0.0001896520049763568,
2132
+ "loss": 0.8995,
2133
+ "step": 346
2134
+ },
2135
+ {
2136
+ "epoch": 1.48,
2137
+ "learning_rate": 0.000189591411124829,
2138
+ "loss": 0.9242,
2139
+ "step": 347
2140
+ },
2141
+ {
2142
+ "epoch": 1.48,
2143
+ "learning_rate": 0.00018953065012176093,
2144
+ "loss": 1.0026,
2145
+ "step": 348
2146
+ },
2147
+ {
2148
+ "epoch": 1.48,
2149
+ "eval_loss": 0.9947116374969482,
2150
+ "eval_runtime": 81.016,
2151
+ "eval_samples_per_second": 0.642,
2152
+ "eval_steps_per_second": 0.321,
2153
+ "step": 348
2154
+ },
2155
+ {
2156
+ "epoch": 1.49,
2157
+ "learning_rate": 0.00018946972208051495,
2158
+ "loss": 1.0078,
2159
+ "step": 349
2160
+ },
2161
+ {
2162
+ "epoch": 1.49,
2163
+ "learning_rate": 0.00018940862711476513,
2164
+ "loss": 0.9399,
2165
+ "step": 350
2166
+ },
2167
+ {
2168
+ "epoch": 1.5,
2169
+ "learning_rate": 0.00018934736533849687,
2170
+ "loss": 0.9266,
2171
+ "step": 351
2172
+ },
2173
+ {
2174
+ "epoch": 1.5,
2175
+ "learning_rate": 0.00018928593686600684,
2176
+ "loss": 1.0301,
2177
+ "step": 352
2178
+ },
2179
+ {
2180
+ "epoch": 1.51,
2181
+ "learning_rate": 0.00018922434181190272,
2182
+ "loss": 0.9463,
2183
+ "step": 353
2184
+ },
2185
+ {
2186
+ "epoch": 1.51,
2187
+ "learning_rate": 0.00018916258029110305,
2188
+ "loss": 0.9941,
2189
+ "step": 354
2190
+ },
2191
+ {
2192
+ "epoch": 1.52,
2193
+ "learning_rate": 0.0001891006524188368,
2194
+ "loss": 1.0061,
2195
+ "step": 355
2196
+ },
2197
+ {
2198
+ "epoch": 1.52,
2199
+ "learning_rate": 0.00018903855831064342,
2200
+ "loss": 0.9129,
2201
+ "step": 356
2202
+ },
2203
+ {
2204
+ "epoch": 1.52,
2205
+ "learning_rate": 0.00018897629808237247,
2206
+ "loss": 1.0232,
2207
+ "step": 357
2208
+ },
2209
+ {
2210
+ "epoch": 1.53,
2211
+ "learning_rate": 0.00018891387185018346,
2212
+ "loss": 0.9164,
2213
+ "step": 358
2214
+ },
2215
+ {
2216
+ "epoch": 1.53,
2217
+ "learning_rate": 0.00018885127973054558,
2218
+ "loss": 1.031,
2219
+ "step": 359
2220
+ },
2221
+ {
2222
+ "epoch": 1.54,
2223
+ "learning_rate": 0.0001887885218402375,
2224
+ "loss": 0.9675,
2225
+ "step": 360
2226
+ },
2227
+ {
2228
+ "epoch": 1.54,
2229
+ "learning_rate": 0.00018872559829634733,
2230
+ "loss": 1.1264,
2231
+ "step": 361
2232
+ },
2233
+ {
2234
+ "epoch": 1.55,
2235
+ "learning_rate": 0.000188662509216272,
2236
+ "loss": 0.9705,
2237
+ "step": 362
2238
+ },
2239
+ {
2240
+ "epoch": 1.55,
2241
+ "learning_rate": 0.00018859925471771742,
2242
+ "loss": 0.9431,
2243
+ "step": 363
2244
+ },
2245
+ {
2246
+ "epoch": 1.55,
2247
+ "learning_rate": 0.00018853583491869818,
2248
+ "loss": 0.9657,
2249
+ "step": 364
2250
+ },
2251
+ {
2252
+ "epoch": 1.56,
2253
+ "learning_rate": 0.0001884722499375371,
2254
+ "loss": 1.0047,
2255
+ "step": 365
2256
+ },
2257
+ {
2258
+ "epoch": 1.56,
2259
+ "learning_rate": 0.00018840849989286532,
2260
+ "loss": 1.0543,
2261
+ "step": 366
2262
+ },
2263
+ {
2264
+ "epoch": 1.57,
2265
+ "learning_rate": 0.0001883445849036219,
2266
+ "loss": 0.9618,
2267
+ "step": 367
2268
+ },
2269
+ {
2270
+ "epoch": 1.57,
2271
+ "learning_rate": 0.00018828050508905365,
2272
+ "loss": 0.9136,
2273
+ "step": 368
2274
+ },
2275
+ {
2276
+ "epoch": 1.58,
2277
+ "learning_rate": 0.00018821626056871485,
2278
+ "loss": 0.9688,
2279
+ "step": 369
2280
+ },
2281
+ {
2282
+ "epoch": 1.58,
2283
+ "learning_rate": 0.00018815185146246716,
2284
+ "loss": 1.0479,
2285
+ "step": 370
2286
+ },
2287
+ {
2288
+ "epoch": 1.58,
2289
+ "learning_rate": 0.00018808727789047924,
2290
+ "loss": 1.0292,
2291
+ "step": 371
2292
+ },
2293
+ {
2294
+ "epoch": 1.59,
2295
+ "learning_rate": 0.00018802253997322657,
2296
+ "loss": 0.8738,
2297
+ "step": 372
2298
+ },
2299
+ {
2300
+ "epoch": 1.59,
2301
+ "learning_rate": 0.0001879576378314913,
2302
+ "loss": 1.0127,
2303
+ "step": 373
2304
+ },
2305
+ {
2306
+ "epoch": 1.6,
2307
+ "learning_rate": 0.00018789257158636203,
2308
+ "loss": 1.02,
2309
+ "step": 374
2310
+ },
2311
+ {
2312
+ "epoch": 1.6,
2313
+ "learning_rate": 0.0001878273413592334,
2314
+ "loss": 0.9951,
2315
+ "step": 375
2316
+ },
2317
+ {
2318
+ "epoch": 1.61,
2319
+ "learning_rate": 0.0001877619472718061,
2320
+ "loss": 1.0025,
2321
+ "step": 376
2322
+ },
2323
+ {
2324
+ "epoch": 1.61,
2325
+ "learning_rate": 0.00018769638944608646,
2326
+ "loss": 0.9847,
2327
+ "step": 377
2328
+ },
2329
+ {
2330
+ "epoch": 1.61,
2331
+ "learning_rate": 0.00018763066800438636,
2332
+ "loss": 0.9779,
2333
+ "step": 378
2334
+ },
2335
+ {
2336
+ "epoch": 1.62,
2337
+ "learning_rate": 0.00018756478306932294,
2338
+ "loss": 1.0122,
2339
+ "step": 379
2340
+ },
2341
+ {
2342
+ "epoch": 1.62,
2343
+ "learning_rate": 0.00018749873476381828,
2344
+ "loss": 0.9998,
2345
+ "step": 380
2346
+ },
2347
+ {
2348
+ "epoch": 1.63,
2349
+ "learning_rate": 0.00018743252321109935,
2350
+ "loss": 0.9515,
2351
+ "step": 381
2352
+ },
2353
+ {
2354
+ "epoch": 1.63,
2355
+ "learning_rate": 0.00018736614853469768,
2356
+ "loss": 1.0467,
2357
+ "step": 382
2358
+ },
2359
+ {
2360
+ "epoch": 1.64,
2361
+ "learning_rate": 0.00018729961085844915,
2362
+ "loss": 1.0071,
2363
+ "step": 383
2364
+ },
2365
+ {
2366
+ "epoch": 1.64,
2367
+ "learning_rate": 0.0001872329103064937,
2368
+ "loss": 1.0,
2369
+ "step": 384
2370
+ },
2371
+ {
2372
+ "epoch": 1.65,
2373
+ "learning_rate": 0.00018716604700327514,
2374
+ "loss": 0.9072,
2375
+ "step": 385
2376
+ },
2377
+ {
2378
+ "epoch": 1.65,
2379
+ "learning_rate": 0.00018709902107354103,
2380
+ "loss": 0.912,
2381
+ "step": 386
2382
+ },
2383
+ {
2384
+ "epoch": 1.65,
2385
+ "learning_rate": 0.00018703183264234227,
2386
+ "loss": 0.9476,
2387
+ "step": 387
2388
+ },
2389
+ {
2390
+ "epoch": 1.66,
2391
+ "learning_rate": 0.0001869644818350329,
2392
+ "loss": 0.9964,
2393
+ "step": 388
2394
+ },
2395
+ {
2396
+ "epoch": 1.66,
2397
+ "learning_rate": 0.00018689696877727006,
2398
+ "loss": 1.0276,
2399
+ "step": 389
2400
+ },
2401
+ {
2402
+ "epoch": 1.67,
2403
+ "learning_rate": 0.00018682929359501338,
2404
+ "loss": 0.9049,
2405
+ "step": 390
2406
+ },
2407
+ {
2408
+ "epoch": 1.67,
2409
+ "learning_rate": 0.00018676145641452515,
2410
+ "loss": 0.9695,
2411
+ "step": 391
2412
+ },
2413
+ {
2414
+ "epoch": 1.68,
2415
+ "learning_rate": 0.00018669345736236983,
2416
+ "loss": 0.9078,
2417
+ "step": 392
2418
+ },
2419
+ {
2420
+ "epoch": 1.68,
2421
+ "learning_rate": 0.00018662529656541388,
2422
+ "loss": 0.9674,
2423
+ "step": 393
2424
+ },
2425
+ {
2426
+ "epoch": 1.68,
2427
+ "learning_rate": 0.00018655697415082556,
2428
+ "loss": 0.9606,
2429
+ "step": 394
2430
+ },
2431
+ {
2432
+ "epoch": 1.69,
2433
+ "learning_rate": 0.0001864884902460746,
2434
+ "loss": 0.8688,
2435
+ "step": 395
2436
+ },
2437
+ {
2438
+ "epoch": 1.69,
2439
+ "learning_rate": 0.00018641984497893213,
2440
+ "loss": 1.0021,
2441
+ "step": 396
2442
+ },
2443
+ {
2444
+ "epoch": 1.7,
2445
+ "learning_rate": 0.00018635103847747023,
2446
+ "loss": 0.9592,
2447
+ "step": 397
2448
+ },
2449
+ {
2450
+ "epoch": 1.7,
2451
+ "learning_rate": 0.00018628207087006184,
2452
+ "loss": 0.8933,
2453
+ "step": 398
2454
+ },
2455
+ {
2456
+ "epoch": 1.71,
2457
+ "learning_rate": 0.0001862129422853805,
2458
+ "loss": 0.9368,
2459
+ "step": 399
2460
+ },
2461
+ {
2462
+ "epoch": 1.71,
2463
+ "learning_rate": 0.0001861436528524,
2464
+ "loss": 1.0112,
2465
+ "step": 400
2466
+ },
2467
+ {
2468
+ "epoch": 1.71,
2469
+ "learning_rate": 0.0001860742027003944,
2470
+ "loss": 1.0098,
2471
+ "step": 401
2472
+ },
2473
+ {
2474
+ "epoch": 1.72,
2475
+ "learning_rate": 0.00018600459195893738,
2476
+ "loss": 0.8526,
2477
+ "step": 402
2478
+ },
2479
+ {
2480
+ "epoch": 1.72,
2481
+ "learning_rate": 0.00018593482075790244,
2482
+ "loss": 0.9283,
2483
+ "step": 403
2484
+ },
2485
+ {
2486
+ "epoch": 1.73,
2487
+ "learning_rate": 0.00018586488922746233,
2488
+ "loss": 0.9405,
2489
+ "step": 404
2490
+ },
2491
+ {
2492
+ "epoch": 1.73,
2493
+ "learning_rate": 0.00018579479749808897,
2494
+ "loss": 0.9386,
2495
+ "step": 405
2496
+ },
2497
+ {
2498
+ "epoch": 1.74,
2499
+ "learning_rate": 0.0001857245457005532,
2500
+ "loss": 0.9265,
2501
+ "step": 406
2502
+ },
2503
+ {
2504
+ "epoch": 1.74,
2505
+ "eval_loss": 0.9922024607658386,
2506
+ "eval_runtime": 81.0283,
2507
+ "eval_samples_per_second": 0.642,
2508
+ "eval_steps_per_second": 0.321,
2509
+ "step": 406
2510
+ },
2511
+ {
2512
+ "epoch": 1.74,
2513
+ "learning_rate": 0.0001856541339659244,
2514
+ "loss": 0.9656,
2515
+ "step": 407
2516
+ },
2517
+ {
2518
+ "epoch": 1.74,
2519
+ "learning_rate": 0.00018558356242557043,
2520
+ "loss": 0.9213,
2521
+ "step": 408
2522
+ },
2523
+ {
2524
+ "epoch": 1.75,
2525
+ "learning_rate": 0.00018551283121115729,
2526
+ "loss": 0.9558,
2527
+ "step": 409
2528
+ },
2529
+ {
2530
+ "epoch": 1.75,
2531
+ "learning_rate": 0.00018544194045464886,
2532
+ "loss": 1.0537,
2533
+ "step": 410
2534
+ },
2535
+ {
2536
+ "epoch": 1.76,
2537
+ "learning_rate": 0.00018537089028830672,
2538
+ "loss": 1.0134,
2539
+ "step": 411
2540
+ },
2541
+ {
2542
+ "epoch": 1.76,
2543
+ "learning_rate": 0.0001852996808446898,
2544
+ "loss": 1.0515,
2545
+ "step": 412
2546
+ },
2547
+ {
2548
+ "epoch": 1.77,
2549
+ "learning_rate": 0.00018522831225665422,
2550
+ "loss": 0.9971,
2551
+ "step": 413
2552
+ },
2553
+ {
2554
+ "epoch": 1.77,
2555
+ "learning_rate": 0.00018515678465735308,
2556
+ "loss": 0.9434,
2557
+ "step": 414
2558
+ },
2559
+ {
2560
+ "epoch": 1.77,
2561
+ "learning_rate": 0.00018508509818023608,
2562
+ "loss": 0.9541,
2563
+ "step": 415
2564
+ },
2565
+ {
2566
+ "epoch": 1.78,
2567
+ "learning_rate": 0.0001850132529590493,
2568
+ "loss": 1.0231,
2569
+ "step": 416
2570
+ },
2571
+ {
2572
+ "epoch": 1.78,
2573
+ "learning_rate": 0.00018494124912783516,
2574
+ "loss": 0.895,
2575
+ "step": 417
2576
+ },
2577
+ {
2578
+ "epoch": 1.79,
2579
+ "learning_rate": 0.00018486908682093173,
2580
+ "loss": 1.0275,
2581
+ "step": 418
2582
+ },
2583
+ {
2584
+ "epoch": 1.79,
2585
+ "learning_rate": 0.00018479676617297303,
2586
+ "loss": 0.9956,
2587
+ "step": 419
2588
+ },
2589
+ {
2590
+ "epoch": 1.8,
2591
+ "learning_rate": 0.00018472428731888837,
2592
+ "loss": 0.9154,
2593
+ "step": 420
2594
+ },
2595
+ {
2596
+ "epoch": 1.8,
2597
+ "learning_rate": 0.00018465165039390215,
2598
+ "loss": 1.091,
2599
+ "step": 421
2600
+ },
2601
+ {
2602
+ "epoch": 1.81,
2603
+ "learning_rate": 0.00018457885553353385,
2604
+ "loss": 0.9218,
2605
+ "step": 422
2606
+ },
2607
+ {
2608
+ "epoch": 1.81,
2609
+ "learning_rate": 0.00018450590287359748,
2610
+ "loss": 0.9878,
2611
+ "step": 423
2612
+ },
2613
+ {
2614
+ "epoch": 1.81,
2615
+ "learning_rate": 0.00018443279255020152,
2616
+ "loss": 0.9075,
2617
+ "step": 424
2618
+ },
2619
+ {
2620
+ "epoch": 1.82,
2621
+ "learning_rate": 0.00018435952469974856,
2622
+ "loss": 0.9818,
2623
+ "step": 425
2624
+ },
2625
+ {
2626
+ "epoch": 1.82,
2627
+ "learning_rate": 0.00018428609945893518,
2628
+ "loss": 0.9162,
2629
+ "step": 426
2630
+ },
2631
+ {
2632
+ "epoch": 1.83,
2633
+ "learning_rate": 0.0001842125169647515,
2634
+ "loss": 0.9931,
2635
+ "step": 427
2636
+ },
2637
+ {
2638
+ "epoch": 1.83,
2639
+ "learning_rate": 0.00018413877735448108,
2640
+ "loss": 0.984,
2641
+ "step": 428
2642
+ },
2643
+ {
2644
+ "epoch": 1.84,
2645
+ "learning_rate": 0.0001840648807657006,
2646
+ "loss": 0.9306,
2647
+ "step": 429
2648
+ },
2649
+ {
2650
+ "epoch": 1.84,
2651
+ "learning_rate": 0.00018399082733627965,
2652
+ "loss": 0.9698,
2653
+ "step": 430
2654
+ },
2655
+ {
2656
+ "epoch": 1.84,
2657
+ "learning_rate": 0.00018391661720438038,
2658
+ "loss": 0.9633,
2659
+ "step": 431
2660
+ },
2661
+ {
2662
+ "epoch": 1.85,
2663
+ "learning_rate": 0.00018384225050845735,
2664
+ "loss": 1.0766,
2665
+ "step": 432
2666
+ },
2667
+ {
2668
+ "epoch": 1.85,
2669
+ "learning_rate": 0.00018376772738725722,
2670
+ "loss": 0.9762,
2671
+ "step": 433
2672
+ },
2673
+ {
2674
+ "epoch": 1.86,
2675
+ "learning_rate": 0.00018369304797981843,
2676
+ "loss": 0.989,
2677
+ "step": 434
2678
+ },
2679
+ {
2680
+ "epoch": 1.86,
2681
+ "learning_rate": 0.0001836182124254711,
2682
+ "loss": 0.9703,
2683
+ "step": 435
2684
+ },
2685
+ {
2686
+ "epoch": 1.87,
2687
+ "learning_rate": 0.00018354322086383662,
2688
+ "loss": 0.9834,
2689
+ "step": 436
2690
+ },
2691
+ {
2692
+ "epoch": 1.87,
2693
+ "learning_rate": 0.00018346807343482745,
2694
+ "loss": 0.9891,
2695
+ "step": 437
2696
+ },
2697
+ {
2698
+ "epoch": 1.87,
2699
+ "learning_rate": 0.00018339277027864682,
2700
+ "loss": 0.9947,
2701
+ "step": 438
2702
+ },
2703
+ {
2704
+ "epoch": 1.88,
2705
+ "learning_rate": 0.0001833173115357886,
2706
+ "loss": 0.9875,
2707
+ "step": 439
2708
+ },
2709
+ {
2710
+ "epoch": 1.88,
2711
+ "learning_rate": 0.00018324169734703683,
2712
+ "loss": 0.9665,
2713
+ "step": 440
2714
+ },
2715
+ {
2716
+ "epoch": 1.89,
2717
+ "learning_rate": 0.00018316592785346564,
2718
+ "loss": 0.8935,
2719
+ "step": 441
2720
+ },
2721
+ {
2722
+ "epoch": 1.89,
2723
+ "learning_rate": 0.00018309000319643892,
2724
+ "loss": 1.0179,
2725
+ "step": 442
2726
+ },
2727
+ {
2728
+ "epoch": 1.9,
2729
+ "learning_rate": 0.00018301392351760992,
2730
+ "loss": 0.951,
2731
+ "step": 443
2732
+ },
2733
+ {
2734
+ "epoch": 1.9,
2735
+ "learning_rate": 0.00018293768895892134,
2736
+ "loss": 0.9589,
2737
+ "step": 444
2738
+ },
2739
+ {
2740
+ "epoch": 1.9,
2741
+ "learning_rate": 0.0001828612996626046,
2742
+ "loss": 0.9594,
2743
+ "step": 445
2744
+ },
2745
+ {
2746
+ "epoch": 1.91,
2747
+ "learning_rate": 0.00018278475577118,
2748
+ "loss": 0.9288,
2749
+ "step": 446
2750
+ },
2751
+ {
2752
+ "epoch": 1.91,
2753
+ "learning_rate": 0.00018270805742745617,
2754
+ "loss": 1.0545,
2755
+ "step": 447
2756
+ },
2757
+ {
2758
+ "epoch": 1.92,
2759
+ "learning_rate": 0.00018263120477453,
2760
+ "loss": 0.9885,
2761
+ "step": 448
2762
+ },
2763
+ {
2764
+ "epoch": 1.92,
2765
+ "learning_rate": 0.0001825541979557861,
2766
+ "loss": 0.9119,
2767
+ "step": 449
2768
+ },
2769
+ {
2770
+ "epoch": 1.93,
2771
+ "learning_rate": 0.00018247703711489686,
2772
+ "loss": 0.9624,
2773
+ "step": 450
2774
+ },
2775
+ {
2776
+ "epoch": 1.93,
2777
+ "learning_rate": 0.00018239972239582203,
2778
+ "loss": 1.1076,
2779
+ "step": 451
2780
+ },
2781
+ {
2782
+ "epoch": 1.94,
2783
+ "learning_rate": 0.00018232225394280836,
2784
+ "loss": 0.9937,
2785
+ "step": 452
2786
+ },
2787
+ {
2788
+ "epoch": 1.94,
2789
+ "learning_rate": 0.0001822446319003895,
2790
+ "loss": 1.0366,
2791
+ "step": 453
2792
+ },
2793
+ {
2794
+ "epoch": 1.94,
2795
+ "learning_rate": 0.0001821668564133856,
2796
+ "loss": 0.9735,
2797
+ "step": 454
2798
+ },
2799
+ {
2800
+ "epoch": 1.95,
2801
+ "learning_rate": 0.00018208892762690317,
2802
+ "loss": 0.9755,
2803
+ "step": 455
2804
+ },
2805
+ {
2806
+ "epoch": 1.95,
2807
+ "learning_rate": 0.00018201084568633463,
2808
+ "loss": 1.0696,
2809
+ "step": 456
2810
+ },
2811
+ {
2812
+ "epoch": 1.96,
2813
+ "learning_rate": 0.00018193261073735822,
2814
+ "loss": 1.0793,
2815
+ "step": 457
2816
+ },
2817
+ {
2818
+ "epoch": 1.96,
2819
+ "learning_rate": 0.0001818542229259376,
2820
+ "loss": 1.0016,
2821
+ "step": 458
2822
+ },
2823
+ {
2824
+ "epoch": 1.97,
2825
+ "learning_rate": 0.00018177568239832165,
2826
+ "loss": 1.0114,
2827
+ "step": 459
2828
+ },
2829
+ {
2830
+ "epoch": 1.97,
2831
+ "learning_rate": 0.0001816969893010442,
2832
+ "loss": 0.8932,
2833
+ "step": 460
2834
+ },
2835
+ {
2836
+ "epoch": 1.97,
2837
+ "learning_rate": 0.0001816181437809237,
2838
+ "loss": 0.9821,
2839
+ "step": 461
2840
+ },
2841
+ {
2842
+ "epoch": 1.98,
2843
+ "learning_rate": 0.00018153914598506297,
2844
+ "loss": 1.0272,
2845
+ "step": 462
2846
+ }
2847
+ ],
2848
+ "logging_steps": 1,
2849
+ "max_steps": 2310,
2850
+ "num_input_tokens_seen": 0,
2851
+ "num_train_epochs": 10,
2852
+ "save_steps": 231,
2853
+ "total_flos": 3.2675073228590285e+17,
2854
+ "train_batch_size": 2,
2855
+ "trial_name": null,
2856
+ "trial_params": null
2857
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:82927ffe90b51593899088c9819d8f99d2c3cee85ff954cf955874f0579b430b
3
+ size 4731