--- library_name: transformers license: apache-2.0 datasets: - gtfintechlab/fomc_communication - Sorour/fomc language: - en metrics: - accuracy base_model: - distilbert/distilbert-base-uncased pipeline_tag: text-classification --- # Model Card for Model ID Fine-Tuned Transformer for FOMC Sentiment Classification ## Model Details ### Model Description This model is a fine-tuned version of [DistilBERT](https://huggingface.co/distilbert-base-uncased) for **FOMC meeting sentiment classification**. It predicts whether a sentence from U.S. Federal Open Market Committee (FOMC) statements is **Dovish**, **Hawkish**, or **Neutral**. - **Developed by:** [Ao Chen] - **Model type:** [Encoder-only Transformer (DistilBERT)] - **Language(s) (NLP):** [en] - **License:** [Apache 2.0] - **Finetuned from model [optional]:** [distilbert-base-uncased] ## Uses ### Direct Use ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch model_name = "achen0525/DistilBERT_FOMC_Classifier" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) text = "The Committee decided to maintain the target range for the federal funds rate." inputs = tokenizer(text, return_tensors="pt") outputs = model(**inputs) pred = torch.argmax(outputs.logits, dim=1) labels = ['Dovish', 'Hawkish', 'Neutral'] print(labels[pred.item()]) ``` ## Model Card Contact For questions or feedback, reach out to: aochen@bu.edu