--- library_name: transformers license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - abdouaziiz/fulfulde_lam metrics: - wer model-index: - name: whisper-medium-v3-ff4 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: abdouaziiz/fulfulde_lam type: abdouaziiz/fulfulde_lam metrics: - name: Wer type: wer value: 0.16938691239432335 --- # whisper-medium-v3-ff4 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the abdouaziiz/fulfulde_lam dataset. It achieves the following results on the evaluation set: - Loss: 0.2572 - Wer: 0.1694 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 26000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 0.3543 | 0.6393 | 5000 | 0.3380 | 0.2361 | | 0.2259 | 1.2786 | 10000 | 0.2893 | 0.2022 | | 0.1938 | 1.9179 | 15000 | 0.2597 | 0.1790 | | 0.1119 | 2.5572 | 20000 | 0.2572 | 0.1694 | | 0.0632 | 3.1965 | 25000 | 0.2615 | 0.1660 | ### Framework versions - Transformers 4.46.0 - Pytorch 2.6.0+cu124 - Datasets 3.4.1 - Tokenizers 0.20.3