Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,124 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
tags: []
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
-
|
10 |
|
|
|
11 |
|
12 |
## Model Details
|
13 |
|
14 |
### Model Description
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
-
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
|
32 |
-
-
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
## Uses
|
37 |
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
### Direct Use
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
|
52 |
### Out-of-Scope Use
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
|
58 |
## Bias, Risks, and Limitations
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
|
64 |
### Recommendations
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
|
70 |
## How to Get Started with the Model
|
71 |
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
## Training Details
|
77 |
|
78 |
### Training Data
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
|
84 |
### Training Procedure
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
|
93 |
#### Training Hyperparameters
|
94 |
|
95 |
-
- **
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
|
103 |
## Evaluation
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
|
121 |
-
|
122 |
|
123 |
-
|
124 |
|
125 |
-
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
|
141 |
## Environmental Impact
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
Carbon
|
146 |
|
147 |
-
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
|
153 |
-
|
154 |
|
155 |
-
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
|
159 |
### Compute Infrastructure
|
160 |
|
161 |
-
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
|
197 |
-
##
|
198 |
|
199 |
-
|
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
tags: [quantization, qwen3, qlora, causal-lm, low-rank-adapters, 4bit, bitsandbytes, peft, efficient-finetuning]
|
4 |
---
|
5 |
|
6 |
+
# Qwen3-0.6B Quantized with QLoRA for Reasoning Tasks
|
|
|
|
|
|
|
7 |
|
8 |
+
This is a 4-bit quantized version of `Qwen/Qwen3-0.6B-Base`, fine-tuned using LoRA adapters on multiple MCQA-style reasoning datasets. The model was optimized using QLoRA, a parameter-efficient tuning method with minimal memory footprint and minimal accuracy loss.
|
9 |
|
10 |
## Model Details
|
11 |
|
12 |
### Model Description
|
13 |
|
14 |
+
This model is:
|
15 |
+
- A quantized version of `Qwen/Qwen3-0.6B-Base` using `bitsandbytes` 4-bit NormalFloat (nf4)
|
16 |
+
- Fine-tuned using Low-Rank Adaptation (LoRA) with rank 8
|
17 |
+
- Adapted to multiple-choice reasoning datasets like AQuA-RAT and TheoremQA
|
18 |
+
- Fully compatible with Hugging Face Transformers
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
- **Developed by:** Ahmed Abdelmalek (EPFL CS-552 Project)
|
21 |
+
- **Model type:** Causal Language Model
|
22 |
+
- **Language(s):** English
|
23 |
+
- **License:** Apache 2.0
|
24 |
+
- **Fine-tuned from model:** `Qwen/Qwen3-0.6B-Base`
|
25 |
|
26 |
+
### Model Sources
|
27 |
|
28 |
+
- [Repository](https://huggingface.co/Qwen/Qwen3-0.6B-Base)
|
|
|
|
|
29 |
|
30 |
## Uses
|
31 |
|
|
|
|
|
32 |
### Direct Use
|
33 |
|
34 |
+
You can directly use this model for MCQA-style question-answering tasks using generation.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
### Out-of-Scope Use
|
37 |
|
38 |
+
- Not intended for open-ended generation or safety-critical applications
|
39 |
+
- Not intended for real-time or commercial deployment without evaluation
|
|
|
40 |
|
41 |
## Bias, Risks, and Limitations
|
42 |
|
43 |
+
- Inherits biases from its base model and training data (e.g., reasoning datasets)
|
44 |
+
- May fail on adversarial or out-of-distribution logic tasks
|
|
|
45 |
|
46 |
### Recommendations
|
47 |
|
48 |
+
Evaluate the model against your specific reasoning task before production use.
|
|
|
|
|
49 |
|
50 |
## How to Get Started with the Model
|
51 |
|
52 |
+
```python
|
53 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
54 |
+
|
55 |
+
model_id = "your-username/MNLP_M2_quantized_model"
|
56 |
+
|
57 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
58 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True)
|
59 |
|
60 |
+
prompt = "Question: What is 3 + 5?
|
61 |
+
Options:
|
62 |
+
A) 6
|
63 |
+
B) 8
|
64 |
+
C) 9
|
65 |
+
D) 10
|
66 |
+
Answer:"
|
67 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
68 |
+
outputs = model.generate(**inputs, max_new_tokens=50)
|
69 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
70 |
+
```
|
71 |
|
72 |
## Training Details
|
73 |
|
74 |
### Training Data
|
75 |
|
76 |
+
- Processed versions of AQuA-RAT, TheoremQA, and custom MCQA datasets
|
77 |
+
- Unified into a single format with rationale-enhanced prompts
|
|
|
78 |
|
79 |
### Training Procedure
|
80 |
|
81 |
+
- **Precision:** fp16
|
82 |
+
- **Quantization:** 4-bit nf4 + double quant + float16 compute
|
83 |
+
- **Adapter Type:** LoRA (r=8, α=16, dropout=0.05)
|
84 |
+
- **Base model frozen**
|
|
|
|
|
85 |
|
86 |
#### Training Hyperparameters
|
87 |
|
88 |
+
- **Epochs:** 3
|
89 |
+
- **Batch size:** 4
|
90 |
+
- **Grad accum steps:** 2
|
91 |
+
- **Optimizer:** paged_adamw_8bit
|
|
|
|
|
|
|
92 |
|
93 |
## Evaluation
|
94 |
|
95 |
+
### Testing Data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
+
Validation set with 1000 samples held out from the unified dataset.
|
98 |
|
99 |
+
### Metrics
|
100 |
|
101 |
+
- Accuracy / F1 (to be reported in evaluation phase)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
## Environmental Impact
|
104 |
|
105 |
+
- **Hardware:** Google Colab Pro, GPU A100
|
106 |
+
- **Hours used:** ~6–7 hours
|
107 |
+
- **Carbon Emitted:** Estimated with [MLCO2](https://mlco2.github.io/impact#compute)
|
108 |
|
109 |
+
## Technical Specifications
|
|
|
|
|
|
|
|
|
110 |
|
111 |
+
### Architecture
|
112 |
|
113 |
+
- Qwen3-0.6B base
|
114 |
+
- 28-layer transformer with rotary positional encoding and 16 heads
|
|
|
115 |
|
116 |
### Compute Infrastructure
|
117 |
|
118 |
+
- **Hardware:** Colab A100 GPU, High RAM
|
119 |
+
- **Software:** Python 3.10, PyTorch 2.2.2, Transformers 4.51.3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
+
## Contact
|
122 |
|
123 |
+
- **Author:** Ahmed Abdelmalek
|
124 |
+
- **Email:** [email protected]
|