abdou-u commited on
Commit
2e4cd62
·
verified ·
1 Parent(s): 5d3ae13

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -140
README.md CHANGED
@@ -1,199 +1,124 @@
1
  ---
2
  library_name: transformers
3
- tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
 
 
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
 
 
 
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
 
52
  ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
 
64
  ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
 
 
 
 
 
 
73
 
74
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
 
84
  ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
 
93
  #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
 
121
- #### Metrics
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
 
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
 
141
  ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
154
 
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
 
159
  ### Compute Infrastructure
160
 
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
1
  ---
2
  library_name: transformers
3
+ tags: [quantization, qwen3, qlora, causal-lm, low-rank-adapters, 4bit, bitsandbytes, peft, efficient-finetuning]
4
  ---
5
 
6
+ # Qwen3-0.6B Quantized with QLoRA for Reasoning Tasks
 
 
 
7
 
8
+ This is a 4-bit quantized version of `Qwen/Qwen3-0.6B-Base`, fine-tuned using LoRA adapters on multiple MCQA-style reasoning datasets. The model was optimized using QLoRA, a parameter-efficient tuning method with minimal memory footprint and minimal accuracy loss.
9
 
10
  ## Model Details
11
 
12
  ### Model Description
13
 
14
+ This model is:
15
+ - A quantized version of `Qwen/Qwen3-0.6B-Base` using `bitsandbytes` 4-bit NormalFloat (nf4)
16
+ - Fine-tuned using Low-Rank Adaptation (LoRA) with rank 8
17
+ - Adapted to multiple-choice reasoning datasets like AQuA-RAT and TheoremQA
18
+ - Fully compatible with Hugging Face Transformers
 
 
 
 
 
 
19
 
20
+ - **Developed by:** Ahmed Abdelmalek (EPFL CS-552 Project)
21
+ - **Model type:** Causal Language Model
22
+ - **Language(s):** English
23
+ - **License:** Apache 2.0
24
+ - **Fine-tuned from model:** `Qwen/Qwen3-0.6B-Base`
25
 
26
+ ### Model Sources
27
 
28
+ - [Repository](https://huggingface.co/Qwen/Qwen3-0.6B-Base)
 
 
29
 
30
  ## Uses
31
 
 
 
32
  ### Direct Use
33
 
34
+ You can directly use this model for MCQA-style question-answering tasks using generation.
 
 
 
 
 
 
 
 
35
 
36
  ### Out-of-Scope Use
37
 
38
+ - Not intended for open-ended generation or safety-critical applications
39
+ - Not intended for real-time or commercial deployment without evaluation
 
40
 
41
  ## Bias, Risks, and Limitations
42
 
43
+ - Inherits biases from its base model and training data (e.g., reasoning datasets)
44
+ - May fail on adversarial or out-of-distribution logic tasks
 
45
 
46
  ### Recommendations
47
 
48
+ Evaluate the model against your specific reasoning task before production use.
 
 
49
 
50
  ## How to Get Started with the Model
51
 
52
+ ```python
53
+ from transformers import AutoTokenizer, AutoModelForCausalLM
54
+
55
+ model_id = "your-username/MNLP_M2_quantized_model"
56
+
57
+ tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
58
+ model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True)
59
 
60
+ prompt = "Question: What is 3 + 5?
61
+ Options:
62
+ A) 6
63
+ B) 8
64
+ C) 9
65
+ D) 10
66
+ Answer:"
67
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
68
+ outputs = model.generate(**inputs, max_new_tokens=50)
69
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
70
+ ```
71
 
72
  ## Training Details
73
 
74
  ### Training Data
75
 
76
+ - Processed versions of AQuA-RAT, TheoremQA, and custom MCQA datasets
77
+ - Unified into a single format with rationale-enhanced prompts
 
78
 
79
  ### Training Procedure
80
 
81
+ - **Precision:** fp16
82
+ - **Quantization:** 4-bit nf4 + double quant + float16 compute
83
+ - **Adapter Type:** LoRA (r=8, α=16, dropout=0.05)
84
+ - **Base model frozen**
 
 
85
 
86
  #### Training Hyperparameters
87
 
88
+ - **Epochs:** 3
89
+ - **Batch size:** 4
90
+ - **Grad accum steps:** 2
91
+ - **Optimizer:** paged_adamw_8bit
 
 
 
92
 
93
  ## Evaluation
94
 
95
+ ### Testing Data
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96
 
97
+ Validation set with 1000 samples held out from the unified dataset.
98
 
99
+ ### Metrics
100
 
101
+ - Accuracy / F1 (to be reported in evaluation phase)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102
 
103
  ## Environmental Impact
104
 
105
+ - **Hardware:** Google Colab Pro, GPU A100
106
+ - **Hours used:** ~6–7 hours
107
+ - **Carbon Emitted:** Estimated with [MLCO2](https://mlco2.github.io/impact#compute)
108
 
109
+ ## Technical Specifications
 
 
 
 
110
 
111
+ ### Architecture
112
 
113
+ - Qwen3-0.6B base
114
+ - 28-layer transformer with rotary positional encoding and 16 heads
 
115
 
116
  ### Compute Infrastructure
117
 
118
+ - **Hardware:** Colab A100 GPU, High RAM
119
+ - **Software:** Python 3.10, PyTorch 2.2.2, Transformers 4.51.3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120
 
121
+ ## Contact
122
 
123
+ - **Author:** Ahmed Abdelmalek
124
+ - **Email:** [email protected]