Update README.md
Browse files
README.md
CHANGED
|
@@ -1,199 +1,124 @@
|
|
| 1 |
---
|
| 2 |
library_name: transformers
|
| 3 |
-
tags: []
|
| 4 |
---
|
| 5 |
|
| 6 |
-
#
|
| 7 |
-
|
| 8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
-
|
| 10 |
|
|
|
|
| 11 |
|
| 12 |
## Model Details
|
| 13 |
|
| 14 |
### Model Description
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
-
|
| 21 |
-
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
-
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
-
- **Model type:** [More Information Needed]
|
| 24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
-
- **License:** [More Information Needed]
|
| 26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
|
| 31 |
|
| 32 |
-
-
|
| 33 |
-
- **Paper [optional]:** [More Information Needed]
|
| 34 |
-
- **Demo [optional]:** [More Information Needed]
|
| 35 |
|
| 36 |
## Uses
|
| 37 |
|
| 38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
-
|
| 40 |
### Direct Use
|
| 41 |
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
[More Information Needed]
|
| 45 |
-
|
| 46 |
-
### Downstream Use [optional]
|
| 47 |
-
|
| 48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
-
|
| 50 |
-
[More Information Needed]
|
| 51 |
|
| 52 |
### Out-of-Scope Use
|
| 53 |
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
[More Information Needed]
|
| 57 |
|
| 58 |
## Bias, Risks, and Limitations
|
| 59 |
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
[More Information Needed]
|
| 63 |
|
| 64 |
### Recommendations
|
| 65 |
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
|
| 70 |
## How to Get Started with the Model
|
| 71 |
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
## Training Details
|
| 77 |
|
| 78 |
### Training Data
|
| 79 |
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
[More Information Needed]
|
| 83 |
|
| 84 |
### Training Procedure
|
| 85 |
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
[More Information Needed]
|
| 91 |
-
|
| 92 |
|
| 93 |
#### Training Hyperparameters
|
| 94 |
|
| 95 |
-
- **
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
-
|
| 101 |
-
[More Information Needed]
|
| 102 |
|
| 103 |
## Evaluation
|
| 104 |
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
### Testing Data, Factors & Metrics
|
| 108 |
-
|
| 109 |
-
#### Testing Data
|
| 110 |
-
|
| 111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
-
|
| 113 |
-
[More Information Needed]
|
| 114 |
-
|
| 115 |
-
#### Factors
|
| 116 |
-
|
| 117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
-
|
| 119 |
-
[More Information Needed]
|
| 120 |
|
| 121 |
-
|
| 122 |
|
| 123 |
-
|
| 124 |
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
### Results
|
| 128 |
-
|
| 129 |
-
[More Information Needed]
|
| 130 |
-
|
| 131 |
-
#### Summary
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
## Model Examination [optional]
|
| 136 |
-
|
| 137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
-
|
| 139 |
-
[More Information Needed]
|
| 140 |
|
| 141 |
## Environmental Impact
|
| 142 |
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
Carbon
|
| 146 |
|
| 147 |
-
|
| 148 |
-
- **Hours used:** [More Information Needed]
|
| 149 |
-
- **Cloud Provider:** [More Information Needed]
|
| 150 |
-
- **Compute Region:** [More Information Needed]
|
| 151 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
|
| 153 |
-
|
| 154 |
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
[More Information Needed]
|
| 158 |
|
| 159 |
### Compute Infrastructure
|
| 160 |
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
#### Hardware
|
| 164 |
-
|
| 165 |
-
[More Information Needed]
|
| 166 |
-
|
| 167 |
-
#### Software
|
| 168 |
-
|
| 169 |
-
[More Information Needed]
|
| 170 |
-
|
| 171 |
-
## Citation [optional]
|
| 172 |
-
|
| 173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
-
|
| 175 |
-
**BibTeX:**
|
| 176 |
-
|
| 177 |
-
[More Information Needed]
|
| 178 |
-
|
| 179 |
-
**APA:**
|
| 180 |
-
|
| 181 |
-
[More Information Needed]
|
| 182 |
-
|
| 183 |
-
## Glossary [optional]
|
| 184 |
-
|
| 185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
-
|
| 187 |
-
[More Information Needed]
|
| 188 |
-
|
| 189 |
-
## More Information [optional]
|
| 190 |
-
|
| 191 |
-
[More Information Needed]
|
| 192 |
-
|
| 193 |
-
## Model Card Authors [optional]
|
| 194 |
-
|
| 195 |
-
[More Information Needed]
|
| 196 |
|
| 197 |
-
##
|
| 198 |
|
| 199 |
-
|
|
|
|
|
|
| 1 |
---
|
| 2 |
library_name: transformers
|
| 3 |
+
tags: [quantization, qwen3, qlora, causal-lm, low-rank-adapters, 4bit, bitsandbytes, peft, efficient-finetuning]
|
| 4 |
---
|
| 5 |
|
| 6 |
+
# Qwen3-0.6B Quantized with QLoRA for Reasoning Tasks
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
+
This is a 4-bit quantized version of `Qwen/Qwen3-0.6B-Base`, fine-tuned using LoRA adapters on multiple MCQA-style reasoning datasets. The model was optimized using QLoRA, a parameter-efficient tuning method with minimal memory footprint and minimal accuracy loss.
|
| 9 |
|
| 10 |
## Model Details
|
| 11 |
|
| 12 |
### Model Description
|
| 13 |
|
| 14 |
+
This model is:
|
| 15 |
+
- A quantized version of `Qwen/Qwen3-0.6B-Base` using `bitsandbytes` 4-bit NormalFloat (nf4)
|
| 16 |
+
- Fine-tuned using Low-Rank Adaptation (LoRA) with rank 8
|
| 17 |
+
- Adapted to multiple-choice reasoning datasets like AQuA-RAT and TheoremQA
|
| 18 |
+
- Fully compatible with Hugging Face Transformers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
+
- **Developed by:** Ahmed Abdelmalek (EPFL CS-552 Project)
|
| 21 |
+
- **Model type:** Causal Language Model
|
| 22 |
+
- **Language(s):** English
|
| 23 |
+
- **License:** Apache 2.0
|
| 24 |
+
- **Fine-tuned from model:** `Qwen/Qwen3-0.6B-Base`
|
| 25 |
|
| 26 |
+
### Model Sources
|
| 27 |
|
| 28 |
+
- [Repository](https://huggingface.co/Qwen/Qwen3-0.6B-Base)
|
|
|
|
|
|
|
| 29 |
|
| 30 |
## Uses
|
| 31 |
|
|
|
|
|
|
|
| 32 |
### Direct Use
|
| 33 |
|
| 34 |
+
You can directly use this model for MCQA-style question-answering tasks using generation.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
### Out-of-Scope Use
|
| 37 |
|
| 38 |
+
- Not intended for open-ended generation or safety-critical applications
|
| 39 |
+
- Not intended for real-time or commercial deployment without evaluation
|
|
|
|
| 40 |
|
| 41 |
## Bias, Risks, and Limitations
|
| 42 |
|
| 43 |
+
- Inherits biases from its base model and training data (e.g., reasoning datasets)
|
| 44 |
+
- May fail on adversarial or out-of-distribution logic tasks
|
|
|
|
| 45 |
|
| 46 |
### Recommendations
|
| 47 |
|
| 48 |
+
Evaluate the model against your specific reasoning task before production use.
|
|
|
|
|
|
|
| 49 |
|
| 50 |
## How to Get Started with the Model
|
| 51 |
|
| 52 |
+
```python
|
| 53 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 54 |
+
|
| 55 |
+
model_id = "your-username/MNLP_M2_quantized_model"
|
| 56 |
+
|
| 57 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
| 58 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True)
|
| 59 |
|
| 60 |
+
prompt = "Question: What is 3 + 5?
|
| 61 |
+
Options:
|
| 62 |
+
A) 6
|
| 63 |
+
B) 8
|
| 64 |
+
C) 9
|
| 65 |
+
D) 10
|
| 66 |
+
Answer:"
|
| 67 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 68 |
+
outputs = model.generate(**inputs, max_new_tokens=50)
|
| 69 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
| 70 |
+
```
|
| 71 |
|
| 72 |
## Training Details
|
| 73 |
|
| 74 |
### Training Data
|
| 75 |
|
| 76 |
+
- Processed versions of AQuA-RAT, TheoremQA, and custom MCQA datasets
|
| 77 |
+
- Unified into a single format with rationale-enhanced prompts
|
|
|
|
| 78 |
|
| 79 |
### Training Procedure
|
| 80 |
|
| 81 |
+
- **Precision:** fp16
|
| 82 |
+
- **Quantization:** 4-bit nf4 + double quant + float16 compute
|
| 83 |
+
- **Adapter Type:** LoRA (r=8, α=16, dropout=0.05)
|
| 84 |
+
- **Base model frozen**
|
|
|
|
|
|
|
| 85 |
|
| 86 |
#### Training Hyperparameters
|
| 87 |
|
| 88 |
+
- **Epochs:** 3
|
| 89 |
+
- **Batch size:** 4
|
| 90 |
+
- **Grad accum steps:** 2
|
| 91 |
+
- **Optimizer:** paged_adamw_8bit
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
## Evaluation
|
| 94 |
|
| 95 |
+
### Testing Data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
| 97 |
+
Validation set with 1000 samples held out from the unified dataset.
|
| 98 |
|
| 99 |
+
### Metrics
|
| 100 |
|
| 101 |
+
- Accuracy / F1 (to be reported in evaluation phase)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
## Environmental Impact
|
| 104 |
|
| 105 |
+
- **Hardware:** Google Colab Pro, GPU A100
|
| 106 |
+
- **Hours used:** ~6–7 hours
|
| 107 |
+
- **Carbon Emitted:** Estimated with [MLCO2](https://mlco2.github.io/impact#compute)
|
| 108 |
|
| 109 |
+
## Technical Specifications
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
|
| 111 |
+
### Architecture
|
| 112 |
|
| 113 |
+
- Qwen3-0.6B base
|
| 114 |
+
- 28-layer transformer with rotary positional encoding and 16 heads
|
|
|
|
| 115 |
|
| 116 |
### Compute Infrastructure
|
| 117 |
|
| 118 |
+
- **Hardware:** Colab A100 GPU, High RAM
|
| 119 |
+
- **Software:** Python 3.10, PyTorch 2.2.2, Transformers 4.51.3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
+
## Contact
|
| 122 |
|
| 123 |
+
- **Author:** Ahmed Abdelmalek
|
| 124 |
+
- **Email:** [email protected]
|