Update README.md
Browse files
README.md
CHANGED
@@ -11,10 +11,10 @@ Note: These results are with corrected parsing for BBH from Eleuther's [lm-evalu
|
|
11 |
|
12 |
#### Overall:
|
13 |
|
14 |
-
| Model | Groups | Version | Filter | n-shot | Metric |
|
15 |
-
|
16 |
-
| Smaug-Qwen2-72B-Instruct | bbh | N/A | get-answer | 3 | exact_match |
|
17 |
-
| Qwen2-72B-Instruct | bbh | N/A | get-answer | 3 | exact_match |
|
18 |
|
19 |
#### Breakdown:
|
20 |
|
@@ -53,36 +53,79 @@ Smaug-Qwen2-72B-Instruct:
|
|
53 |
|
54 |
Qwen2-72B-Instruct:
|
55 |
|
56 |
-
|
|
57 |
-
|
58 |
-
|bbh |N/A
|
59 |
-
| - bbh_cot_fewshot_boolean_expressions
|
60 |
-
| - bbh_cot_fewshot_causal_judgement
|
61 |
-
| - bbh_cot_fewshot_date_understanding
|
62 |
-
| - bbh_cot_fewshot_disambiguation_qa
|
63 |
-
| - bbh_cot_fewshot_dyck_languages
|
64 |
-
| - bbh_cot_fewshot_formal_fallacies
|
65 |
-
| - bbh_cot_fewshot_geometric_shapes
|
66 |
-
| - bbh_cot_fewshot_hyperbaton
|
67 |
-
| - bbh_cot_fewshot_logical_deduction_five_objects
|
68 |
-
| - bbh_cot_fewshot_logical_deduction_seven_objects
|
69 |
-
| - bbh_cot_fewshot_logical_deduction_three_objects
|
70 |
-
| - bbh_cot_fewshot_movie_recommendation
|
71 |
-
| - bbh_cot_fewshot_multistep_arithmetic_two
|
72 |
-
| - bbh_cot_fewshot_navigate
|
73 |
-
| - bbh_cot_fewshot_object_counting
|
74 |
-
| - bbh_cot_fewshot_penguins_in_a_table
|
75 |
-
| - bbh_cot_fewshot_reasoning_about_colored_objects
|
76 |
-
| - bbh_cot_fewshot_ruin_names
|
77 |
-
| - bbh_cot_fewshot_salient_translation_error_detection
|
78 |
-
| - bbh_cot_fewshot_snarks
|
79 |
-
| - bbh_cot_fewshot_sports_understanding
|
80 |
-
| - bbh_cot_fewshot_temporal_sequences
|
81 |
-
| - bbh_cot_fewshot_tracking_shuffled_objects_five_objects
|
82 |
-
| - bbh_cot_fewshot_tracking_shuffled_objects_seven_objects|
|
83 |
-
| - bbh_cot_fewshot_tracking_shuffled_objects_three_objects|
|
84 |
-
| - bbh_cot_fewshot_web_of_lies
|
85 |
-
| - bbh_cot_fewshot_word_sorting
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
# Model Card for Model ID
|
88 |
|
@@ -181,100 +224,6 @@ Use the code below to get started with the model.
|
|
181 |
|
182 |
[More Information Needed]
|
183 |
|
184 |
-
## Evaluation
|
185 |
-
|
186 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
187 |
-
|
188 |
-
### Testing Data, Factors & Metrics
|
189 |
-
|
190 |
-
#### Testing Data
|
191 |
-
|
192 |
-
<!-- This should link to a Dataset Card if possible. -->
|
193 |
-
|
194 |
-
[More Information Needed]
|
195 |
-
|
196 |
-
#### Factors
|
197 |
-
|
198 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
199 |
-
|
200 |
-
[More Information Needed]
|
201 |
-
|
202 |
-
#### Metrics
|
203 |
-
|
204 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
205 |
-
|
206 |
-
[More Information Needed]
|
207 |
-
|
208 |
-
### Results
|
209 |
-
|
210 |
-
[More Information Needed]
|
211 |
-
|
212 |
-
#### Summary
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
## Model Examination [optional]
|
217 |
-
|
218 |
-
<!-- Relevant interpretability work for the model goes here -->
|
219 |
-
|
220 |
-
[More Information Needed]
|
221 |
-
|
222 |
-
## Environmental Impact
|
223 |
-
|
224 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
225 |
-
|
226 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
227 |
-
|
228 |
-
- **Hardware Type:** [More Information Needed]
|
229 |
-
- **Hours used:** [More Information Needed]
|
230 |
-
- **Cloud Provider:** [More Information Needed]
|
231 |
-
- **Compute Region:** [More Information Needed]
|
232 |
-
- **Carbon Emitted:** [More Information Needed]
|
233 |
-
|
234 |
-
## Technical Specifications [optional]
|
235 |
-
|
236 |
-
### Model Architecture and Objective
|
237 |
-
|
238 |
-
[More Information Needed]
|
239 |
-
|
240 |
-
### Compute Infrastructure
|
241 |
-
|
242 |
-
[More Information Needed]
|
243 |
-
|
244 |
-
#### Hardware
|
245 |
-
|
246 |
-
[More Information Needed]
|
247 |
-
|
248 |
-
#### Software
|
249 |
-
|
250 |
-
[More Information Needed]
|
251 |
-
|
252 |
-
## Citation [optional]
|
253 |
-
|
254 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
255 |
-
|
256 |
-
**BibTeX:**
|
257 |
-
|
258 |
-
[More Information Needed]
|
259 |
-
|
260 |
-
**APA:**
|
261 |
-
|
262 |
-
[More Information Needed]
|
263 |
-
|
264 |
-
## Glossary [optional]
|
265 |
-
|
266 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
267 |
|
268 |
-
[More Information Needed]
|
269 |
-
|
270 |
-
## More Information [optional]
|
271 |
-
|
272 |
-
[More Information Needed]
|
273 |
-
|
274 |
-
## Model Card Authors [optional]
|
275 |
-
|
276 |
-
[More Information Needed]
|
277 |
|
278 |
-
## Model Card Contact
|
279 |
|
280 |
-
[More Information Needed]
|
|
|
11 |
|
12 |
#### Overall:
|
13 |
|
14 |
+
| Model | Groups | Version | Filter | n-shot | Metric | Value | | Stderr |
|
15 |
+
|----------------------------|--------|---------|------------|--------|-------------|--------|---|--------|
|
16 |
+
| Smaug-Qwen2-72B-Instruct | bbh | N/A | get-answer | 3 | exact_match | 0.8241 | ± | 0.0042 |
|
17 |
+
| Qwen2-72B-Instruct | bbh | N/A | get-answer | 3 | exact_match | 0.8036 | ± | 0.0044 |
|
18 |
|
19 |
#### Breakdown:
|
20 |
|
|
|
53 |
|
54 |
Qwen2-72B-Instruct:
|
55 |
|
56 |
+
| Tasks | Version | Filter | n-shot | Metric | Value | Stderr |
|
57 |
+
|-----------------------------------------------------------|---------|------------|--------|-------------|--------|--------|
|
58 |
+
| bbh | N/A | get-answer | 3 | exact_match | 0.8036 | 0.0044 |
|
59 |
+
| - bbh_cot_fewshot_boolean_expressions | 2 | get-answer | 3 | exact_match | 0.9640 | 0.0118 |
|
60 |
+
| - bbh_cot_fewshot_causal_judgement | 2 | get-answer | 3 | exact_match | 0.6684 | 0.0345 |
|
61 |
+
| - bbh_cot_fewshot_date_understanding | 2 | get-answer | 3 | exact_match | 0.8000 | 0.0253 |
|
62 |
+
| - bbh_cot_fewshot_disambiguation_qa | 2 | get-answer | 3 | exact_match | 0.8360 | 0.0235 |
|
63 |
+
| - bbh_cot_fewshot_dyck_languages | 2 | get-answer | 3 | exact_match | 0.3040 | 0.0292 |
|
64 |
+
| - bbh_cot_fewshot_formal_fallacies | 2 | get-answer | 3 | exact_match | 0.7480 | 0.0275 |
|
65 |
+
| - bbh_cot_fewshot_geometric_shapes | 2 | get-answer | 3 | exact_match | 0.4960 | 0.0317 |
|
66 |
+
| - bbh_cot_fewshot_hyperbaton | 2 | get-answer | 3 | exact_match | 0.9440 | 0.0146 |
|
67 |
+
| - bbh_cot_fewshot_logical_deduction_five_objects | 2 | get-answer | 3 | exact_match | 0.6800 | 0.0296 |
|
68 |
+
| - bbh_cot_fewshot_logical_deduction_seven_objects | 2 | get-answer | 3 | exact_match | 0.4720 | 0.0316 |
|
69 |
+
| - bbh_cot_fewshot_logical_deduction_three_objects | 2 | get-answer | 3 | exact_match | 0.9200 | 0.0172 |
|
70 |
+
| - bbh_cot_fewshot_movie_recommendation | 2 | get-answer | 3 | exact_match | 0.7800 | 0.0263 |
|
71 |
+
| - bbh_cot_fewshot_multistep_arithmetic_two | 2 | get-answer | 3 | exact_match | 0.9760 | 0.0097 |
|
72 |
+
| - bbh_cot_fewshot_navigate | 2 | get-answer | 3 | exact_match | 0.9520 | 0.0135 |
|
73 |
+
| - bbh_cot_fewshot_object_counting | 2 | get-answer | 3 | exact_match | 0.9480 | 0.0141 |
|
74 |
+
| - bbh_cot_fewshot_penguins_in_a_table | 2 | get-answer | 3 | exact_match | 0.5753 | 0.0410 |
|
75 |
+
| - bbh_cot_fewshot_reasoning_about_colored_objects | 2 | get-answer | 3 | exact_match | 0.8120 | 0.0248 |
|
76 |
+
| - bbh_cot_fewshot_ruin_names | 2 | get-answer | 3 | exact_match | 0.8760 | 0.0209 |
|
77 |
+
| - bbh_cot_fewshot_salient_translation_error_detection | 2 | get-answer | 3 | exact_match | 0.5880 | 0.0312 |
|
78 |
+
| - bbh_cot_fewshot_snarks | 2 | get-answer | 3 | exact_match | 0.8764 | 0.0247 |
|
79 |
+
| - bbh_cot_fewshot_sports_understanding | 2 | get-answer | 3 | exact_match | 0.9080 | 0.0183 |
|
80 |
+
| - bbh_cot_fewshot_temporal_sequences | 2 | get-answer | 3 | exact_match | 0.9960 | 0.0040 |
|
81 |
+
| - bbh_cot_fewshot_tracking_shuffled_objects_five_objects | 2 | get-answer | 3 | exact_match | 0.9160 | 0.0176 |
|
82 |
+
| - bbh_cot_fewshot_tracking_shuffled_objects_seven_objects | 2 | get-answer | 3 | exact_match | 0.9400 | 0.0151 |
|
83 |
+
| - bbh_cot_fewshot_tracking_shuffled_objects_three_objects | 2 | get-answer | 3 | exact_match | 0.9440 | 0.0146 |
|
84 |
+
| - bbh_cot_fewshot_web_of_lies | 2 | get-answer | 3 | exact_match | 1.0000 | 0.0000 |
|
85 |
+
| - bbh_cot_fewshot_word_sorting | 2 | get-answer | 3 | exact_match | 0.6680 | 0.0298 |
|
86 |
+
|
87 |
+
## Arena-Hard
|
88 |
+
|
89 |
+
Score vs selected others (sourced from: (https://lmsys.org/blog/2024-04-19-arena-hard/#full-leaderboard-with-gpt-4-turbo-as-judge)). GPT-4o and Gemini-1.5-pro-latest were missing from the original blob post, and we produced those numbers from a local run using the same methodology.
|
90 |
+
|
91 |
+
| Model | Score | 95% Confidence Interval | Average Tokens |
|
92 |
+
| :---- | ---------: | ----------: | ------: |
|
93 |
+
| GPT-4-Turbo-2024-04-09 | 82.6 | (-1.8, 1.6) | 662 |
|
94 |
+
| GPT-4o | 78.3 | (-2.4, 2.1) | 685 |
|
95 |
+
| Gemini-1.5-pro-latest | 72.1 | (-2.3, 2.2) | 630 |
|
96 |
+
| Claude-3-Opus-20240229 | 60.4 | (-3.3, 2.4) | 541 |
|
97 |
+
| Smaug-Llama-3-70B-Instruct | 56.7 | (-2.2, 2.6) | 661 |
|
98 |
+
| GPT-4-0314 | 50.0 | (-0.0, 0.0) | 423 |
|
99 |
+
| Smaug-Qwen2-72B-Instruct | score: 48.0 | (-1.8, 2.1) | 628 |
|
100 |
+
| Claude-3-Sonnet-20240229 | 46.8 | (-2.1, 2.2) | 552 |
|
101 |
+
| Qwen2-72B-Instruct | score: 43.5 | (-2.6, 2.7) | 531 |
|
102 |
+
| Llama-3-70B-Instruct | 41.1 | (-2.5, 2.4) | 583 |
|
103 |
+
| GPT-4-0613 | 37.9 | (-2.2, 2.0) | 354 |
|
104 |
+
| Mistral-Large-2402 | 37.7 | (-1.9, 2.6) | 400 |
|
105 |
+
| Mixtral-8x22B-Instruct-v0.1 | 36.4 | (-2.7, 2.9) | 430 |
|
106 |
+
| Qwen1.5-72B-Chat | 36.1 | (-2.5, 2.2) | 474 |
|
107 |
+
| Command-R-Plus | 33.1 | (-2.1, 2.2) | 541 |
|
108 |
+
| Mistral-Medium | 31.9 | (-2.3, 2.4) | 485 |
|
109 |
+
| GPT-3.5-Turbo-0613 | 24.8 | (-1.6, 2.0) | 401 |
|
110 |
+
|
111 |
+
## MT-Bench
|
112 |
+
|
113 |
+
########## First turn ##########
|
114 |
+
score
|
115 |
+
model turn
|
116 |
+
Qwen2-72B-Instruct 1 9.18125
|
117 |
+
Smaug-Qwen2-72B-Instruct 1 9.05625
|
118 |
+
########## Second turn ##########
|
119 |
+
score
|
120 |
+
model turn
|
121 |
+
Qwen2-72B-Instruct 2 8.74684
|
122 |
+
Smaug-Qwen2-72B-Instruct 2 8.67500
|
123 |
+
########## Average ##########
|
124 |
+
score
|
125 |
+
model
|
126 |
+
Qwen2-72B-Instruct 8.96541
|
127 |
+
Smaug-Qwen2-72B-Instruct 8.86563
|
128 |
+
|
129 |
|
130 |
# Model Card for Model ID
|
131 |
|
|
|
224 |
|
225 |
[More Information Needed]
|
226 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
|
|
|
229 |
|
|