a0a7 commited on
Commit
68d0276
·
verified ·
1 Parent(s): aaf3bd8

Upload pipeline.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. pipeline.py +38 -0
pipeline.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import torch
3
+ import torch.nn as nn
4
+ from PIL import Image
5
+ import torchvision.transforms as transforms
6
+ from typing import List
7
+
8
+ class GreggRecognitionPipeline:
9
+ def __init__(self, model_path="pytorch_model.bin"):
10
+ self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
11
+ self.transform = transforms.Compose([
12
+ transforms.Resize((256, 256)),
13
+ transforms.Grayscale(num_output_channels=1),
14
+ transforms.ToTensor(),
15
+ ])
16
+ # Load model here - implement based on your model structure
17
+
18
+ def __call__(self, images):
19
+ """Process images and return text predictions"""
20
+ if not isinstance(images, list):
21
+ images = [images]
22
+
23
+ results = []
24
+ for image in images:
25
+ if isinstance(image, str):
26
+ image = Image.open(image)
27
+
28
+ # Preprocess image
29
+ image_tensor = self.transform(image).unsqueeze(0).to(self.device)
30
+
31
+ # Generate text (implement based on your model)
32
+ with torch.no_grad():
33
+ # This is a placeholder - replace with your actual inference
34
+ predicted_text = "sample_text"
35
+
36
+ results.append({"generated_text": predicted_text})
37
+
38
+ return results if len(results) > 1 else results[0]