Upload pipeline.py with huggingface_hub
Browse files- pipeline.py +38 -0
pipeline.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from PIL import Image
|
5 |
+
import torchvision.transforms as transforms
|
6 |
+
from typing import List
|
7 |
+
|
8 |
+
class GreggRecognitionPipeline:
|
9 |
+
def __init__(self, model_path="pytorch_model.bin"):
|
10 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
11 |
+
self.transform = transforms.Compose([
|
12 |
+
transforms.Resize((256, 256)),
|
13 |
+
transforms.Grayscale(num_output_channels=1),
|
14 |
+
transforms.ToTensor(),
|
15 |
+
])
|
16 |
+
# Load model here - implement based on your model structure
|
17 |
+
|
18 |
+
def __call__(self, images):
|
19 |
+
"""Process images and return text predictions"""
|
20 |
+
if not isinstance(images, list):
|
21 |
+
images = [images]
|
22 |
+
|
23 |
+
results = []
|
24 |
+
for image in images:
|
25 |
+
if isinstance(image, str):
|
26 |
+
image = Image.open(image)
|
27 |
+
|
28 |
+
# Preprocess image
|
29 |
+
image_tensor = self.transform(image).unsqueeze(0).to(self.device)
|
30 |
+
|
31 |
+
# Generate text (implement based on your model)
|
32 |
+
with torch.no_grad():
|
33 |
+
# This is a placeholder - replace with your actual inference
|
34 |
+
predicted_text = "sample_text"
|
35 |
+
|
36 |
+
results.append({"generated_text": predicted_text})
|
37 |
+
|
38 |
+
return results if len(results) > 1 else results[0]
|