Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -1,3 +1,110 @@
|
|
1 |
---
|
2 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
pipeline_tag: image-to-text
|
6 |
+
tags:
|
7 |
+
- gregg-shorthand
|
8 |
+
- handwriting-recognition
|
9 |
+
- ocr
|
10 |
+
- historical-documents
|
11 |
+
- stenography
|
12 |
+
library_name: pytorch
|
13 |
---
|
14 |
+
|
15 |
+
# Gregg Shorthand Recognition Model
|
16 |
+
|
17 |
+
This model recognizes Gregg shorthand notation from images and converts it to readable text.
|
18 |
+
|
19 |
+
## Model Description
|
20 |
+
|
21 |
+
- **Model Type**: Image-to-Text recognition
|
22 |
+
- **Architecture**: CNN-LSTM with advanced pattern recognition
|
23 |
+
- **Training Data**: Gregg shorthand samples
|
24 |
+
- **Language**: English
|
25 |
+
- **License**: MIT
|
26 |
+
|
27 |
+
## Intended Use
|
28 |
+
|
29 |
+
This model is designed to:
|
30 |
+
- Recognize Gregg shorthand from scanned documents
|
31 |
+
- Convert historical stenographic notes to digital text
|
32 |
+
- Assist in digitizing shorthand archives
|
33 |
+
- Support stenography education and research
|
34 |
+
|
35 |
+
## How to Use
|
36 |
+
|
37 |
+
### Using the Hugging Face Transformers library
|
38 |
+
|
39 |
+
```python
|
40 |
+
from transformers import pipeline
|
41 |
+
from PIL import Image
|
42 |
+
|
43 |
+
# Load the pipeline
|
44 |
+
pipe = pipeline("image-to-text", model="a0a7/gregg-recognition")
|
45 |
+
|
46 |
+
# Load an image
|
47 |
+
image = Image.open("path/to/shorthand/image.png")
|
48 |
+
|
49 |
+
# Generate text
|
50 |
+
result = pipe(image)
|
51 |
+
print(result[0]['generated_text'])
|
52 |
+
```
|
53 |
+
|
54 |
+
### Using the original package
|
55 |
+
|
56 |
+
```python
|
57 |
+
from gregg_recognition import GreggRecognition
|
58 |
+
|
59 |
+
# Initialize the recognizer
|
60 |
+
recognizer = GreggRecognition(model_type="image_to_text")
|
61 |
+
|
62 |
+
# Recognize text from image
|
63 |
+
result = recognizer.recognize("path/to/image.png")
|
64 |
+
print(result)
|
65 |
+
```
|
66 |
+
|
67 |
+
### Command Line Interface
|
68 |
+
|
69 |
+
```bash
|
70 |
+
# Install the package
|
71 |
+
pip install gregg-recognition
|
72 |
+
|
73 |
+
# Use the CLI
|
74 |
+
gregg-recognize path/to/image.png --verbose
|
75 |
+
```
|
76 |
+
|
77 |
+
## Model Performance
|
78 |
+
|
79 |
+
The model uses advanced pattern recognition techniques optimized for Gregg shorthand notation.
|
80 |
+
|
81 |
+
## Training Details
|
82 |
+
|
83 |
+
- **Framework**: PyTorch
|
84 |
+
- **Optimizer**: Adam
|
85 |
+
- **Architecture**: Custom CNN-LSTM with pattern database
|
86 |
+
- **Input Resolution**: 256x256 pixels
|
87 |
+
- **Preprocessing**: Grayscale conversion, normalization
|
88 |
+
|
89 |
+
## Limitations
|
90 |
+
|
91 |
+
- Optimized specifically for Gregg shorthand notation
|
92 |
+
- Performance may vary with image quality
|
93 |
+
- Best results with clear, high-contrast images
|
94 |
+
|
95 |
+
## Citation
|
96 |
+
|
97 |
+
If you use this model in your research, please cite:
|
98 |
+
|
99 |
+
```bibtex
|
100 |
+
@misc{gregg-recognition,
|
101 |
+
title={Gregg Shorthand Recognition Model},
|
102 |
+
author={Your Name},
|
103 |
+
year={2025},
|
104 |
+
url={https://huggingface.co/a0a7/gregg-recognition}
|
105 |
+
}
|
106 |
+
```
|
107 |
+
|
108 |
+
## Contact
|
109 |
+
|
110 |
+
For questions or issues, please open an issue on the [GitHub repository](https://github.com/a0a7/GreggRecognition).
|