a0a7 commited on
Commit
1857ce2
·
verified ·
1 Parent(s): 9a9f054

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +107 -0
README.md CHANGED
@@ -1,3 +1,110 @@
1
  ---
2
  license: mit
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ language:
4
+ - en
5
+ pipeline_tag: image-to-text
6
+ tags:
7
+ - gregg-shorthand
8
+ - handwriting-recognition
9
+ - ocr
10
+ - historical-documents
11
+ - stenography
12
+ library_name: pytorch
13
  ---
14
+
15
+ # Gregg Shorthand Recognition Model
16
+
17
+ This model recognizes Gregg shorthand notation from images and converts it to readable text.
18
+
19
+ ## Model Description
20
+
21
+ - **Model Type**: Image-to-Text recognition
22
+ - **Architecture**: CNN-LSTM with advanced pattern recognition
23
+ - **Training Data**: Gregg shorthand samples
24
+ - **Language**: English
25
+ - **License**: MIT
26
+
27
+ ## Intended Use
28
+
29
+ This model is designed to:
30
+ - Recognize Gregg shorthand from scanned documents
31
+ - Convert historical stenographic notes to digital text
32
+ - Assist in digitizing shorthand archives
33
+ - Support stenography education and research
34
+
35
+ ## How to Use
36
+
37
+ ### Using the Hugging Face Transformers library
38
+
39
+ ```python
40
+ from transformers import pipeline
41
+ from PIL import Image
42
+
43
+ # Load the pipeline
44
+ pipe = pipeline("image-to-text", model="a0a7/gregg-recognition")
45
+
46
+ # Load an image
47
+ image = Image.open("path/to/shorthand/image.png")
48
+
49
+ # Generate text
50
+ result = pipe(image)
51
+ print(result[0]['generated_text'])
52
+ ```
53
+
54
+ ### Using the original package
55
+
56
+ ```python
57
+ from gregg_recognition import GreggRecognition
58
+
59
+ # Initialize the recognizer
60
+ recognizer = GreggRecognition(model_type="image_to_text")
61
+
62
+ # Recognize text from image
63
+ result = recognizer.recognize("path/to/image.png")
64
+ print(result)
65
+ ```
66
+
67
+ ### Command Line Interface
68
+
69
+ ```bash
70
+ # Install the package
71
+ pip install gregg-recognition
72
+
73
+ # Use the CLI
74
+ gregg-recognize path/to/image.png --verbose
75
+ ```
76
+
77
+ ## Model Performance
78
+
79
+ The model uses advanced pattern recognition techniques optimized for Gregg shorthand notation.
80
+
81
+ ## Training Details
82
+
83
+ - **Framework**: PyTorch
84
+ - **Optimizer**: Adam
85
+ - **Architecture**: Custom CNN-LSTM with pattern database
86
+ - **Input Resolution**: 256x256 pixels
87
+ - **Preprocessing**: Grayscale conversion, normalization
88
+
89
+ ## Limitations
90
+
91
+ - Optimized specifically for Gregg shorthand notation
92
+ - Performance may vary with image quality
93
+ - Best results with clear, high-contrast images
94
+
95
+ ## Citation
96
+
97
+ If you use this model in your research, please cite:
98
+
99
+ ```bibtex
100
+ @misc{gregg-recognition,
101
+ title={Gregg Shorthand Recognition Model},
102
+ author={Your Name},
103
+ year={2025},
104
+ url={https://huggingface.co/a0a7/gregg-recognition}
105
+ }
106
+ ```
107
+
108
+ ## Contact
109
+
110
+ For questions or issues, please open an issue on the [GitHub repository](https://github.com/a0a7/GreggRecognition).