--- datasets: - ZhenghanYU/CFunSet language: - ch - zh base_model: - Qwen/Qwen2.5-7B-Instruct --- # CFunModel: A Comprehensive Language Model for Chinese Humor Understanding and Generation CFunModel is a comprehensive language model designed for Chinese humor understanding, generation, and processing. Built on top of **Qwen2.5-7B-Instruct**, CFunModel is fine-tuned on **CFunSet**, a diverse multi-task dataset that aggregates various Chinese humor-related tasks. CFunModel outperforms several existing large language models in humor-related tasks, including joke generation, humor recognition, crosstalk response selection, and humor explanation, etc. ### 🔥 Key Features - 🎭 **Multi-Task Capability:** Supports joke generation, humor recognition, crosstalk continuation, humor explanation, and more. - 📚 **Extensive Fine-Tuning:** Trained on over **160,000+** humor-related samples aggregated from Tieba-JokeBar, CrossDial, Chumor, HumorWB, and other datasets. - 🎯 **High Performance:** Consistently achieves superior results in humor tasks compared to baseline models like GPT-4o, DeepSeek-V3, and Qwen2.5-7B-Instruct. - 🧠 **Understanding and Generation:** Excels at generating humorous responses, explaining humor, and classifying humorous content. ## 🎯 Supported Tasks CFunModel is capable of solving a variety of humor-related tasks, here are several examples: ### 1. **Joke Continuation** - **Prompt:** 我将给你笑话的第一句话,请你生成整个笑话。笑话的第一句话如下: - **Input:** 我对女儿说:再看10分钟的动画片就该睡觉了。 - **Output:** 她抗议说时间太短。“那就600秒,够长了吧?”我说。女儿说:“够了,够了。” ### 2. **Crosstalk Response Selection** - **Prompt:** 给定一段相声台词,请从多个备选项中选择最合适的逗哏回复。 - **Input:** 已有台词:我是肖飞。|噢。|给大家说一段。|好。|吃五谷杂粮没有不得病的。|是。|我是大病上医院,小病上药店。|小病干嘛不找大夫呀?|挂号费够买药的了。|噢。 候选回复:早上天还没亮,三狗屁就来到了工程队。 反正很重,去买药,下台阶儿。 那天我脚气犯了,上药店买点儿药吧。 都快半夜了,上哪找药店去? - **Output:** 那天我脚气犯了,上药店买点儿药吧。 ### 3. **Humor Recognition** - **Prompt:** 以下是一段文本,请分析它是否具有幽默性。幽默性指该文本是否可能引起读者发笑,或通过语言技巧(如双关语、讽刺、夸张、荒诞或逻辑上的意外)营造幽默效果。只需要输出“幽默”或“不幽默”。 - **Input:** 问一下已经步入社会的大人们,假如有机会带着现在的记忆回到高一那年,你最想做什么? - **Output:** 不幽默 ### 4. **Joke Continuation** - **Prompt:** 生成一个关键词为“砍价”的笑话。 - **Input:** - - **Output:** 老板:一块五一斤。|我:太贵了,五块钱三斤吧。|老板:不行不行。 ### 5. **Crosstalk Continuation** - **Prompt:** 以下是一段相声的前一半内容,请你根据给定的部分续写完成这段相声。 - **Input:** 0:“常言道,烟酒不分家。来,抽一根儿!”|1:“你小子真鬼,用你的孬烟换我的好酒!”|0:“吝啬鬼,你能喝什么好酒?”|1:“谁不知道你呀,犯了瘾十烟屁股吸。”|0:“你馋的不要脸,蹭人家的酒喝。” - **Output:** 1:“你讨厌讨厌真讨厌,公共场合放毒烟;害人害己害环境,吞云吐雾造污染。浪费开支烧金钱,口干舌燥得咽炎;慢性自杀损寿命,戒烟戒烟快戒烟!”|0:“你混蛋混蛋真混蛋,一喝就高吐一滩;伤头伤胃伤心肝,醉生梦死早完蛋……”|1:“你完蛋!”|0:“你完蛋!”|1:“你是烟鬼,你滚蛋!” --- ### 📊 Model Performance CFunModel consistently achieves high performance across multiple humor-related tasks. Below is a performance comparison of CFunModel with other state-of-the-art models: | **Model** | **Dougen Response (Acc)** | **Penggen Response (Acc)** | **HumorWB (Acc)** | |------------------------|----------------------------|-----------------------------|-------------------| | GPT-4o | 79.67 | 73.88 | 83.41 | | GPT-4o mini | 74.14 | 67.45 | 84.78 | | DeepSeek-V3 | 83.66 | 78.16 | 85.15 | | Qwen2.5-7B-Instruct | 24.74 | 20.87 | 79.56 | | ERNIE | 84.54 | - | - | | RoBERTa | - | 76.19 | - | | **CFunModel (Ours)** | **91.70** | **88.99** | **85.98** | ✅ CFunModel significantly improves on the base model, especially in humor-related tasks, showcasing superior performance and understanding. --- ### Quickstart Here provides a code similar with the structure of Qwen2.5-7B-Instruct to show you how to use CFunModel to generate humor-related answers. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Qwen/Qwen2.5-7B-Instruct" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) prompt = "生成一个主题为家庭琐事的笑话。" messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` ## 🤝 Citation If you use CFunModel in your research or applications, please cite: ``` @misc{yu2025cfunmodelfunnylanguagemodel, title={CFunModel: A "Funny" Language Model Capable of Chinese Humor Generation and Processing}, author={Zhenghan Yu and Xinyu Hu and Xiaojun Wan}, year={2025}, eprint={2503.20417}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2503.20417}, } ``` 🎉 **Happy Experimenting with CFunSet!** 🎉