--- library_name: transformers license: apache-2.0 base_model: axolotl-ai-co/gpt-oss-20b-dequantized tags: - generated_from_trainer datasets: - HuggingFaceH4/Multilingual-Thinking model-index: - name: outputs/gpt-oss-20b/ results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.12.0` ```yaml # the original mxfp4 quantized model is not supported with FSDP cpu_ram_efficient_loading # FSDP cpu_ram_efficient_loading is used to reduce the initial CPU memory usage when loading the model base_model: axolotl-ai-co/gpt-oss-20b-dequantized use_kernels: false dp_shard_size: 8 # requires 2x8xH100 nodes plugins: - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin experimental_skip_move_to_device: true # prevent OOM by NOT putting model to GPU before sharding datasets: - path: HuggingFaceH4/Multilingual-Thinking type: chat_template field_thinking: thinking template_thinking_key: thinking dataset_prepared_path: last_run_prepared val_set_size: 0 output_dir: ./outputs/gpt-oss-20b/ #save_only_model: true sequence_len: 4096 sample_packing: true pad_to_sequence_len: true wandb_project: gpt-oss-20b wandb_name: fft-20b gradient_accumulation_steps: 1 micro_batch_size: 4 num_epochs: 1 optimizer: adamw_torch_fused # 8bit optimizers do not work with FSDP2 offload lr_scheduler: constant_with_warmup learning_rate: 2e-5 load_best_model_at_end: false bf16: true tf32: true flash_attention: true attn_implementation: kernels-community/vllm-flash-attn3 gradient_checkpointing: true activation_offloading: true logging_steps: 1 saves_per_epoch: 1 warmup_ratio: 0.03 special_tokens: eot_tokens: - "<|end|>" #deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json fsdp_version: 2 fsdp_config: offload_params: true state_dict_type: SHARDED_STATE_DICT auto_wrap_policy: TRANSFORMER_BASED_WRAP transformer_layer_cls_to_wrap: GptOssDecoderLayer reshard_after_forward: true cpu_ram_efficient_loading: true ```

# outputs/gpt-oss-20b/ This model is a fine-tuned version of [axolotl-ai-co/gpt-oss-20b-dequantized](https://huggingface.co/axolotl-ai-co/gpt-oss-20b-dequantized) on the HuggingFaceH4/Multilingual-Thinking dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant_with_warmup - training_steps: 8 ### Training results ### Framework versions - Transformers 4.55.0 - Pytorch 2.8.0+cu128 - Datasets 4.0.0 - Tokenizers 0.21.4